
Test Executive Reference 
Manual

LabVIEW Test Executive Reference Manual
May 1999 Edition
Part Number 320599D-01



26 00, 

0, 
, 
Worldwide Technical Support and Product Information

www.natinst.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, 
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76
Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, 
India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, 
Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 0
Singapore 2265886, Spain (Madrid) 91 640 0085, Spain (Barcelona) 93 582 0251, Sweden 08 587 895 00
Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the 
documentation, send e-mail to techpubs@natinst.com .

© Copyright 1993, 1999 National Instruments Corporation. All rights reserved.



 Important Information
 
enced 
do not 
riod. 

ide 
 costs 

y 
serves 
The 
le for 

 
nal 
rranty 

follow 
 
s, 

nical, 
hout 

.

se in 
orm 
 

or by 
rom 
roducts 
or 
ucts 

, 
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that 
execute programming instructions if National Instruments receives notice of such defects during the warranty pe
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outs
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefull
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments re
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. 
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liab
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL  INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS 
ANY WARRANTY OF MERCHANTABILITY  OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED 
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL  INSTRUMENTS SHALL BE LIMITED  TO THE AMOUNT THERETOFORE PAID BY THE 
CUSTOMER. NATIONAL  INSTRUMENTS WILL  NOT BE LIABLE  FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, 
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of 
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. Natio
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The wa
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to 
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third partie
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, wit
the prior written consent of National Instruments Corporation.

Trademarks
CVI™, LabVIEW™, natinst.com ™, and National Instruments™ are trademarks of National Instruments Corporation

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing for a level of reliability suitable for u
or in connection with surgical implants or as critical components in any life support systems whose failure to perf
can reasonably be expected to cause significant injury to a human. Applications of National Instruments products
involving medical or clinical treatment can create a potential for death or bodily injury caused by product failure, 
errors on the part of the user or application designer. Because each end-user system is customized and differs f
National Instruments testing platforms and because a user or application designer may use National Instruments p
in combination with other products in a manner not evaluated or contemplated by National Instruments, the user 
application designer is ultimately responsible for verifying and validating the suitability of National Instruments prod
whenever National Instruments products are incorporated in a system or application, including, without limitation
the appropriate design, process and safety level of such system or application.



Contents
iv

-1
-2
2

-2
3
-4
-4
-7

2-1
-1
-2

-4
2-5
2-9

-1
-1
-2
2
-2
About This Manual
Conventions ...................................................................................................................xiii
Related Documentation..................................................................................................x

Chapter 1
Introduction

Overview........................................................................................................................1-1
Features............................................................................................................1
Available Packages..........................................................................................1

Development System ........................................................................1-
Run-Time System .............................................................................1-2

Test Executive Architecture...........................................................................................1
System Callback VIs .......................................................................................1-
Sequence Callback VIs....................................................................................1

Execution Model............................................................................................................1
Operating Levels .............................................................................................1

Chapter 2
Getting Started

Running a Test Sequence...............................................................................................
Starting the Test Executive..............................................................................2
Opening and Running a Test Sequence...........................................................2

Changing to Technician Level ..........................................................2-3
Executing Individual Steps and Using Single Pass Mode ................2-3
Quitting the Test Executive...............................................................2-4

Examining a Test Program ............................................................................................2
Editing a Test Sequence.................................................................................................
Example Sequences .......................................................................................................

Chapter 3
Operating the Test Executive

Controls..........................................................................................................................3-1
Open ................................................................................................................3
Close ................................................................................................................3
Quit ..................................................................................................................3
Login................................................................................................................3-
Edit ..................................................................................................................3
© National Instruments Corporation v LabVIEW Test Executive Reference Manual



Contents

-2
2
-2
3
3
-3
-3
4
-4

-4
-5

-5
5
-5
-5
6

-7
-8
9
10
10
-12
-12

-12
-13
3

-13
4
14
4
5
15

1
-2
2

3

New ................................................................................................................. 3
Test UUT......................................................................................................... 3-
Single Pass ...................................................................................................... 3
Abort ............................................................................................................... 3-
Abort Loop...................................................................................................... 3-
Run Step(s)...................................................................................................... 3
Loop Step(s).................................................................................................... 3
Stop On Any Failure ....................................................................................... 3-
Sequence Runtime Updates?........................................................................... 3
Run Mode........................................................................................................ 3
Clear Step Status ............................................................................................. 3
Clear Test Display........................................................................................... 3
View Test Report ............................................................................................ 3-
Sequence Report ............................................................................................. 3
Test Runtime Updates? ................................................................................... 3
Operator Interface Key Assignments.............................................................. 3-

Indicators ....................................................................................................................... 3-7
Sequence Display............................................................................................ 3
Test Display .................................................................................................... 3

Result of Each Step........................................................................... 3-
Error Messages ................................................................................. 3-
The Test Report ................................................................................ 3-

Status............................................................................................................... 3
Sequence Name............................................................................................... 3
Sequence Information ..................................................................................... 3

Operator Dialog Boxes .................................................................................................. 3
Default Login Dialog Box............................................................................... 3-1
Default Select Sequence Dialog Box .............................................................. 3
Default UUT Information Dialog Box............................................................ 3-1
Default Test Failed Dialog Box ...................................................................... 3-
Default PASS/FAIL/ABORT Banners ........................................................... 3-1
Run-Time Error Warning Dialog Box ............................................................ 3-1
Parsing Error Dialog Box................................................................................ 3-

Chapter 4
Creating Tests and Test Sequences

Writing LabVIEW Tests................................................................................................ 4-
Required Indicators ......................................................................................... 4

Test Data Cluster .............................................................................. 4-
Error Cluster ..................................................................................... 4-3

Optional Inputs................................................................................................ 4-
Input Buffer ...................................................................................... 4-3
Invocation Information ..................................................................... 4-4
LabVIEW Test Executive Reference Manual vi www.natinst.com



Contents

-5
-6
7
-7
4-7
4-
4-8
-9
9
9

9
0

0

0
0
1

-11
11
1

11
2

3
4

5

15

16
6
6
-16
16
17
7
7
7

Writing C Tests (Windows NT/98/95 and UNIX).........................................................4-4
Test Data Structure ..........................................................................................4
Test Error Structure .........................................................................................4
Compiling Test Functions ...............................................................................4-

Creating Pre-Run and Post-Run VIs ..............................................................................4
What is a Test Sequence? ..............................................................................................
What is a Step? ..............................................................................................................8
Creating or Editing a Test Sequence..............................................................................

Step Editing Elements .....................................................................................4
Insert..................................................................................................4-
New Step ...........................................................................................4-
Copy Steps, Cut Steps, Delete Steps, Paste Steps, 

and Undo Step Edits.......................................................................4-
Using the Editing Elements...............................................................4-1

Adding a New Step.............................................................4-1
Modifying a Step ................................................................4-10
Copying a Step....................................................................4-1
Deleting a Step....................................................................4-1

Mass Editing .....................................................................................4-1
Step Editor Controls ........................................................................................4

Type ..................................................................................................4-
Name (LabVIEW Test, C Test, Sequence) .......................................4-1
Resource (LabVIEW Test, C Test, Sequence)..................................4-
Function (C Test) ..............................................................................4-1
Limit Specification (LabVIEW Test, C Test) ...................................4-12
Load Specification (LabVIEW Test, C Test, Sequence) ..................4-1
Run Mode (LabVIEW Test, C Test, Sequence)................................4-1
FAIL Action (LabVIEW Test, C Test, Sequence)............................4-14

Max Loop Count.................................................................4-14
Input Buffer? (LabVIEW Test, C Test) ............................................4-14
Invocation Info? (LabVIEW Test) ....................................................4-15
Show Test VI Panel at Runtime? (LabVIEW Test) ..........................4-1
Edit Test VI (LabVIEW Test)...........................................................4-15
Edit Dependencies.............................................................................4-
Edit Step Comment (LabVIEW Test, C Test, GOTO, 

Sequence) .......................................................................................4-
GOTO Target (GOTO) .....................................................................4-1
GOTO Conditions (GOTO) ..............................................................4-1

Sequence Options ............................................................................................4
Sequence Load Specification ............................................................4-
Sequence Path Specification .............................................................4-
Stop on Any Failure ..........................................................................4-1
Description ........................................................................................4-1
Enable Test Report Logging .............................................................4-1
© National Instruments Corporation vii LabVIEW Test Executive Reference Manual



Contents

8
18
18
-18
20
20

-20
-22
-22
3

24
25
5
5

25
6
6

-1
-1
2
3
-3
-4

-4
4

-6

8
9
10
-10
11
1

Report File Mode.............................................................................. 4-1
Change Report File ........................................................................... 4-
Sequence VIs .................................................................................... 4-

Sequence Errors .............................................................................................. 4
File Menu ........................................................................................................ 4-
Edit Menu........................................................................................................ 4-
Sequence Editor Control Key Assignments.................................................... 4
Sequence Editor Menu Shortcuts.................................................................... 4
Editing Dependencies ..................................................................................... 4

AND and OR Expressions................................................................ 4-2
Complex Dependencies .................................................................... 4-
Copy, Cut, Delete, Paste, and Undo ................................................. 4-

Dependency Editing Rules ................................................. 4-2
OK .................................................................................................... 4-2
Cancel ............................................................................................... 4-
Dependency Editor Key Assignments .............................................. 4-2
Relationship among Dependencies, Run Mode, and Test Flow....... 4-2

Chapter 5
Modifying the Test Executive

System Configuration File, testexec.ini......................................................................... 5
[Callback Paths] Section ................................................................................. 5

Patching Callback Paths ................................................................... 5-
[Operator Interface Path] Section ................................................................... 5-
[Preferences] Section ...................................................................................... 5

Operator Interface VI .................................................................................................... 5
Modifying the Default VI ............................................................................... 5-4
Front Panel ...................................................................................................... 5
Block Diagram ................................................................................................ 5-

Command Loop ................................................................................ 5-5
Callback VIs .................................................................................................................. 5-6

Test Executive Callback VI Calling Interface ................................................ 5-6
System Callbacks ............................................................................................ 5

Login................................................................................................. 5-7
Select Sequence ................................................................................ 5-
Open Sequence ................................................................................. 5-
Close Sequence................................................................................. 5-
Save Sequence .................................................................................. 5
Sequence Report ............................................................................... 5-
Exit.................................................................................................... 5-1
LabVIEW Test Executive Reference Manual viii www.natinst.com



Contents

-12
4
4
6
7
-17

19
20
21
2
-23
23

4
5

7
7
8
29

0
0
0
-31
-31
2
33
-33
4
-34
34
4

5

38
39
Sequence Callbacks .........................................................................................5
Pre-UUT Loop ..................................................................................5-1
Pre-UUT............................................................................................5-1
Post-UUT ..........................................................................................5-1
Post-UUT Loop.................................................................................5-1

Pre-Step and Post-Step Callbacks ...................................................................5
Test Report ........................................................................................5-
Post Run-Loop Test ..........................................................................5-
Test Failure .......................................................................................5-
Open Test VI .....................................................................................5-2

Test Executive Typedef Controls ..................................................................................5
Typedefs for Callback VIs...............................................................................5-

TYPEDEF - Login Info.ctl................................................................5-23
TYPEDEF - Sequence.ctl .................................................................5-2
TYPEDEF - Sequence Element.ctl ...................................................5-2
TYPEDEF - UUT Results.ctl............................................................5-2
TYPEDEF - Sequence Result.ctl ......................................................5-2
TYPEDEF - Test Result.ctl...............................................................5-2

Typedefs for LabVIEW Tests .........................................................................5-
TYPEDEF - Invocation Info.ctl ........................................................5-30
TYPEDEF - Input buffer.ctl..............................................................5-3
TYPEDEF - Mode.ctl .......................................................................5-3
TYPEDEF - Test Data.ctl .................................................................5-3

Common Modifications .................................................................................................5
Changing Passwords........................................................................................5
Changing PASS/FAIL/ABORT Banners ........................................................5-3
Changing the UUT Serial Number Prompt .....................................................5-
Changing the Test Report................................................................................5
Using Another Application for Report Generation .........................................5-3

Advanced Modifications................................................................................................5
Result Logging Alternatives............................................................................5-

Logging Test Results on a Per-UUT Basis .......................................5-3
Per-UUT Logger Callback.vi .............................................5-35
Test String Callback.vi .......................................................5-35

Logging Results to a Database Using the LabVIEW SQL Tools 
(Windows only)..............................................................................5-3

Modifications to the System Configuration File ................5-36
The Alternate Callback VIs ................................................5-36

Using LabVIEW Test Shells ...........................................................................5-
Example Sequence Using LabVIEW Test Shells............................................5-
© National Instruments Corporation ix LabVIEW Test Executive Reference Manual



Contents

1
-1
-2

-2
-3
-4
-4

-1
-1

1
2
2

3
-5

6

-11

3
1

Chapter 6
Deploying the Test Executive

LabVIEW Test Executive Run-Time System ............................................................... 6-
Building a Run-Time System ........................................................................................ 6
Other Required Components for a Complete Run-Time System.................................. 6

Callback and Test VIs ..................................................................................... 6
The testexec.ini File ........................................................................................ 6
Test Sequences................................................................................................ 6
Shared Libraries (C Test Resources) .............................................................. 6

Appendix A
Common Questions

Appendix B
Sequence Conversion Notes

Version 4.0 and 5.0 Conversion .................................................................................... B
Step 1—Use the 5.0 Sequence File Converter ................................................ B

Controls ............................................................................................ B-
Indicators .......................................................................................... B-

Step 2—Compile Your Test VIs..................................................................... B-

Appendix C
Technical Support Resources

Glossary

Index

Figures
Figure 1-1. Architecture of the Test Executive ....................................................... 1-
Figure 1-2. Test Sequence Callback VIs ................................................................. 1
Figure 1-3. Flow of Execution in Test UUT Mode ................................................. 1-6
Figure 1-4. Flow of Execution in Single Pass Mode ............................................... 1-

Figure 3-1. Sample Test Report............................................................................... 3

Figure 5-1. Flow of Sequence Callback VIs in a UUT Test Loop .......................... 5-1
Figure 5-2. Test VI Shell Configuration and Execution.......................................... 5-4
LabVIEW Test Executive Reference Manual x www.natinst.com



Contents

7

6
-7
-8
9
-12

-2
-3

-12
-14
14

19
20
-22

-26
-27
Tables
Table 1-1. Operating Level Capabilities.................................................................1-

Table 3-1. Default Operator Interface Key Assignments .......................................3-
Table 3-2. Run Mode Field Values.........................................................................3
Table 3-3. Step Status/Result Field Values ............................................................3
Table 3-4. Comparison Values and Relative Limits...............................................3-
Table 3-5. Status Indicator Values..........................................................................3

Table 4-1. Test Data Cluster Elements ...................................................................4
Table 4-2. Error Cluster Elements ..........................................................................4
Table 4-3. tTestData  Structure Parameters .........................................................4-5
Table 4-4. tTestError  Structure Parameters .......................................................4-6
Table 4-5. Comparison Type Values ......................................................................4
Table 4-6. Run Mode Options ................................................................................4
Table 4-7. FAIL Action Options.............................................................................4-
Table 4-8. Possible Errors and Corrective Actions in the 

Sequence Errors Dialog Box .................................................................4-
Table 4-9. Key Assignments for Sequence Editor Controls...................................4-
Table 4-10. Sequence Editor Menu Commands .......................................................4
Table 4-11. Dependency Editor Key Assignments...................................................4
Table 4-12. Run Mode Step Result Values...............................................................4
© National Instruments Corporation xi LabVIEW Test Executive Reference Manual



About This Manual
 use 

ple, 

 

ions 

eturn 

ction 
ord 

the 
ples. 
ries, 
ions, 

puter 
ode 
This manual describes the LabVIEW Test Executive package. You can
this add-on package for automated sequencing of test programs in 
LabVIEW 5.1 and later.

Conventions
The following conventions appear in this manual:

< > Angle brackets enclose the name of a key on the keyboard—for exam
<PageDown>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for 
example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box opt
to a final action. The sequence File»Page Setup»Options»Substitute 
Fonts directs you to pull down the File menu, select the Page Setup item, 
select Options, and finally select the Substitute Fonts option from the last 
dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes a parameter, menu name, palette name, menu item, r
value, function panel item, or dialog box button or option.

italic Italic text denotes variables, emphasis, a cross reference, or an introdu
to a key concept. This font also denotes text that is a placeholder for a w
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from 
keyboard, sections of code, programming examples, and syntax exam
This font is also used for the proper names of disk drives, paths, directo
programs, subprograms, subroutines, device names, functions, operat
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the com
automatically prints to the screen. This font also emphasizes lines of c
that are different from the other examples.
© National Instruments Corporation xiii LabVIEW Test Executive Reference Manual



About This Manual

ul 
Related Documentation
The following documents contain information that you might find helpf
as you read this manual:

• G Programming Reference Manual

• LabVIEW Function and VI Reference Manual

• LabVIEW QuickStart Guide

• LabVIEW Technical Resource*

• LabVIEW Test Executive Release and Upgrade Notes

• LabVIEW Tutorial

• LabVIEW User Manual

*   To order the LabVIEW Technical Resource Spring 1996 issue, access the LabVIEW Technical Resource web site at 
www.ltrpub.com , or call 214 706 0587, Fax: 214 706 0506.
LabVIEW Test Executive Reference Manual xiv www.natinst.com



© National Instruments Corporation 1-1 LabVIEW Test Executive 
1

 

 test 
bined 
). 

h 
.

ator 

e 

e 

nd 
Introduction

This chapter lists the main features of the Test Executive, explains its
execution model, and describes its three operating levels. 

Overview
A Test Executive is an application you can use to develop and execute
sequences. A test sequence consists of a series of test programs com
with flow control statements that you use to test a unit under test (UUT
The LabVIEW Test Executive can call test programs written using bot
G and C (Windows NT/98/95 and UNIX only) programming languages

The Test Executive includes a powerful Test Executive engine for 
performing test sequencing and sequence editing operations, an oper
interface virtual instrument (VI), and a set of callback VIs for handling 
various interface and data-logging tasks. The operator interface and 
callback VIs are provided with G source code, allowing users to chang
and/or expand the functionality of the LabVIEW Test Executive.

Features
Some of the main features of the Test Executive are as follows:

• Runs hierarchical test sequences

• Calls test programs written in either LabVIEW’s G programming 
language or in C (Windows NT/98/95 and UNIX only)

• Sequences tests based on PASS/FAIL states and advanced 
dependencies

• Logs test reports to either an ASCII file or SQL-compliant databas
(in conjunction with the LabVIEW SQL Tools, included in the 
Enterprise Connectivity Toolset).

• Contains run-time interfacing, including the ability to prompt for 
operator and UUT serial numbers, to display PASS/FAIL banners, a
to perform run-time error notification

• Generates ASCII sequence reports to files

• Allows continuous testing in Test UUT mode
Reference Manual



Chapter 1 Introduction

 

d a 
 
nces 

t 

e 
em.

 set 
 
ng, 
s the 
r 

 

Available Packages
The Test Executive is available in two versions.

Development System
The LabVIEW Test Executive Development System is designed to run
under the LabVIEW development environment. It consists of the Test 
Executive engine, an operator interface VI, a library of callback VIs, an
library of LabVIEW type definitions for use when developing LabVIEW
tests and custom callback VIs. Example test programs and test seque
also are included with the Development System.

Run-Time System
You can use the LabVIEW Application Builder to build a LabVIEW Tes
Executive Run-Time System. With the Run-Time System, you can 
distribute the Text Executive to many test stations without incurring th
expense of outfitting each station with the LabVIEW Development Syst

Test Executive Architecture
The Test Executive includes an engine, an operator interface VI, and a
of callback VIs, which are LabVIEW VIs designed for specific interface
and data-logging operations. The engine handles tasks such as creati
editing, loading, saving, and executing test sequences. The engine use
operator interface VI and the callback VIs to handle tasks such as use
login, report generation, and datalogging.

Figure 1-1 shows the relationship between the Test Executive engine,
the operator interface VI, and the callback VIs.
LabVIEW Test Executive Reference Manual 1-2 www.natinst.com



Chapter 1 Introduction

he 

ich 

he 
r to 
ce 
st 
Figure 1-1.  Architecture of the Test Executive

You can customize the Test Executive by modifying or replacing the 
operator interface VI or the callback VIs. The operator interface VI is t
main panel of the Test Executive. With the main panel, you can issue 
commands to the Test Executive engine and see the results of those 
commands. The Test Executive engine works with 17 callback VIs, wh
are divided into system and sequence callback VIs. For information about 
modifying the operator interface VI, the system callback VIs, or the 
sequence callback VIs, refer to Chapter 5, Modifying the Test Executive. 

System Callback VIs
The Test Executive works with the following system callback VIs:    

• Close Sequence 

• Exit 

• Login 

• Open Sequence 

• Save Sequence 

• Select Sequence

• Sequence Report 

The Login callback VI identifies the Test Executive operator and sets t
operating level. The Select Sequence callback VI prompts the operato
choose a test sequence to open. The Open, Save, and Close Sequen
callback VIs are called when the operator opens, saves, or closes a te

Test Executive Engine

The Operator Interface VI

Callback
VI

Callback
VI

Callback
VICallback

VI
.....
© National Instruments Corporation 1-3 LabVIEW Test Executive Reference Manual



Chapter 1 Introduction

rt file 
lled 

 

 

 Pass 
ful 

play. 

lay a 
hat 
sequence. The Sequence Report callback VI generates an ASCII repo
describing the currently loaded test sequence. The Exit callback VI is ca
when the user exits the Test Executive.

Sequence Callback VIs
The Test Executive works with the following sequence callback VIs:   

• Open Test VI

• Pre-Step

• Pre-UUT

• Pre-UUT Loop

• Post Run-Loop Test

• Post-Step

• Post-UUT

• Post-UUT Loop

• Test Failure

• Test Report 

The next section describes how to use the sequence callback VIs.

Execution Model
The Test Executive can execute a sequence in one of four 
modes—Test UUT, Single Pass, Run Step(s), or Loop Step(s).

• Test UUT, invoked when the user clicks the Test UUT button, 
executes a test sequence repetitively. This mode is the production
operating mode for testing multiple UUTs. 

• In Single Pass mode, the test sequence executes only once. Single
mode is primarily for use during development and also can be use
for diagnostic purposes. 

• Run Step(s) mode, invoked when the user clicks the Run Step(s) 
button, executes the steps currently selected in the Sequence Dis

• Loop Step(s) mode, invoked when the user clicks the Loop Step(s) 
button, executes the step currently selected in the Sequence Disp
specified number of times (or, if only a single step is selected, until t
step fails). 

Both Run Step(s) and Loop Step(s) modes are intended primarily for 
diagnostic purposes.
LabVIEW Test Executive Reference Manual 1-4 www.natinst.com



Chapter 1 Introduction

ertain 
 Test 
ride 
es or 
 you 
iated 

ine 

ng 
s the 

, 
T, 

ied 
alls 
style 
Every test sequence has a set of sequence callback VIs that handle c
run-time or edit-time events. When you create a new test sequence, the
Executive gives it a default set of sequence callback VIs. You can over
these default callback VIs to change the way the Test Executive execut
edits a test sequence. The Sequence Editor also calls these VIs when
want to edit a test VI. Figure 1-2 shows a test sequence and its assoc
callback VIs.

Figure 1-2.  Test Sequence Callback VIs

For a typical test sequence in Test UUT mode, the Test Executive eng
calls the Pre-UUT Loop callback VI before testing the first UUT. The 
Pre-UUT Loop callback VI performs user-specified setup or data loggi
operations. Then, before testing each new UUT, the Test Executive call
Pre-UUT callback VI, which by default prompts the operator for UUT 
information. 

After testing a UUT, the Test Executive calls the Post-UUT callback VI
which by default displays a PASS/FAIL banner. After testing the last UU
the Test Executive calls the Post-UUT Loop callback VI for user-specif
cleanup or data-logging operations. Then, the Test Executive engine c
the Test Report callback VI, which by default generates a spreadsheet-

Sequence

Test 
Failure

Post-UUT

Test Report

Pre-UUT
Loop

Open Test

Post-UUT
Loop

Pre-UUT
Post Run-
Loop Test

Pre-Step Post-Step
© National Instruments Corporation 1-5 LabVIEW Test Executive Reference Manual



Chapter 1 Introduction

UUT 
 

ke. 

gine 

alled 

Test 
I 
I 

a 

ey 
ated 
y 
 

ASCII report detailing the test results for each UUT tested. Figure 1-3 
shows the overall flow of execution in Test UUT mode.

Figure 1-3.  Flow of Execution in Test UUT Mode

In Single Pass mode, the Test Executive engine does not call the Pre-
Loop, Pre-UUT, Post-UUT, or Post-UUT Loop callback VIs. Figure 1-4
shows the overall flow of execution in Single Pass mode.

Figure 1-4.  Flow of Execution in Single Pass Mode

When a step with a FAIL Action of Callback  fails, the Test Executive 
engine calls the Test Failure callback VI to determine what action to ta

After you click the Run Step(s) or Loop Step(s) button to run or loop the 
individual steps selected in the Sequence Display, the Test Executive en
calls the Post Run-Loop Test callback VI.

In all execution modes, the Pre-Step and Post-Step callback VIs are c
before and after each test step, respectively.

In contrast to the other sequence callback VIs, which are called by the 
Executive engine, the Sequence Editor calls the Open Test callback V
when you click the Edit Test VI  button. The default Open Test callback V
opens the front panel of the current LabVIEW test. 

In addition to the sequence callback VIs, each sequence may specify 
Pre-Run and/or Post-Run VI. These VIs run before and after their 
associated sequence runs in either Test UUT or Single Pass mode. Th
also run before and after any group of steps you run from their associ
test sequence in either Run Step(s) or Loop Step(s) mode. You specif
Pre-Run and Post-Run VIs in the Sequence Options dialog box of the
Sequence Editor.

Call
Pre-UUT
Callback

Run
Test

Sequence

Call
Post-UUT
Callback

Call
Post-UUT

Loop Callback

Call
Test Report

Callback

Call
Pre-UUT

Loop Callback

Loop Until
Operator Quits

Run
Test

Sequence

Call
Test Report

Callback
LabVIEW Test Executive Reference Manual 1-6 www.natinst.com



Chapter 1 Introduction

n, 
 

dit 

g 

 test 

 
log 
o 
Operating Levels
The Test Executive has three operating levels—Developer, Technicia
and Operator. Table 1-1 summarizes the capabilities available in each
operating level.

At the Developer level, you have access to all capabilities of the Test 
Executive. 

At the Technician level, you can run individual steps, but you cannot e
sequences. You also can run a sequence in Single Pass mode. The 
Technician level gives you the flexibility to execute steps for diagnosin
a UUT. 

The Operator level is the most restrictive. At this level, you can execute
sequences only in Test UUT mode by clicking the Test UUT button. 

The Login callback VI determines the initial operating level. When you
first load the Test Executive, the default Login callback VI displays a dia
box that prompts you for a password, which sets the operating level. T
change the operating level when running the Test Executive, you can 
re-open the Login dialog box by clicking the Login button on the main 
panel of the Test Executive.

Table 1-1.  Operating Level Capabilities

Level UUT Test

Single Pass
Run Step(s)
Loop Step(s)

Edit 
Sequences

Developer Yes Yes Yes

Technician Yes Yes No

Operator Yes No No
© National Instruments Corporation 1-7 LabVIEW Test Executive Reference Manual



© National Instruments Corporation 2-1 LabVIEW Test Executive 
2

 and 

e 

te 

h are 

stem. 

 

Getting Started

This chapter introduces the basic concepts of Test Executive operation
test sequence development and contains the following examples:

• Running a Test Sequence

• Examining a Test Program

• Editing a Test Sequence

Go through these examples in the order they are presented. The first 
example, Running a Test Sequence, is relevant to anyone who operates th
Test Executive. The second two examples, Examining a Test Program and 
Editing a Test Sequence, are for users who write test programs and crea
test sequences.

The Test Executive also comes with four test sequence examples, whic
described at the end of this chapter.

Note This chapter assumes that you are running the Test Executive Development Sy
If you are executing the Test Executive Run-Time System, you cannot run the Examining 
a Test Program example.

Running a Test Sequence
This section describes how to run a test sequence.

Starting the Test Executive
Perform the following steps to start the Test Executive.

1. Launch LabVIEW.

2. Select Project»Test Executive»Launch Test Executive… to run the 
default operator interface VI.

When the Test Executive begins running, it loads the callback VIs into
memory. After loading the system callback VIs, it calls the Login 
callback VI, which displays the Login dialog box. 

3. Type your name and password into the Login dialog box. Use the 
<Tab> key to move from the Name to the Password field.
Reference Manual



Chapter 2 Getting Started

e, 

 any 

A 

ce 

 test 
Test 

o 

 of 

, 

n.

 

The default Login callback VI uses the password you enter to set the 
operating level. It then passes this operating level to the Test Executiv
which configures itself accordingly. In this session, you run the Test 
Executive at the Operator level. You access the Operator level by typing
text in the Password field.

Note To access the other operating levels, you must type technician  for the Technician 
level and developer  for the Developer level.

4. Press <Enter> (<return>, <Return>) or click the OK  button to confirm 
your entries.

On the Test Executive front panel, notice the word STOPPED that appears 
directly above the Sequence Display. This field is the status indicator. 
flag of STOPPED indicates that no test sequence is currently running. 

Opening and Running a Test Sequence
Perform the following steps to open and run a test sequence.

1. Click the Open button in the upper left corner of the operator interfa
panel.

2. Select the file COMPUTER.SEQ, which is located in the EXAMPLES 
directory of the Test Executive installation. 

A short delay occurs while the Test Executive loads the VIs that the 
sequence requires into memory. After you load COMPUTER.SEQ, notice that 
the test sequence appears in the Sequence Display. The name of the
sequence and the sequence description also appear at the top of the 
Executive front panel. 

3. Click the Test UUT button located beneath the Sequence Display t
execute the test sequence. The Test Executive calls the default 
Pre-UUT callback VI, which prompts you to enter the serial number
the UUT.

4. Type any value for the serial number and press <Enter> (<return>
<Return>) or click the OK  button. 

As the sequence executes, notice the following activities on your scree

• The Status indicator displays RUNNING.

• As each step runs, the word RUNNING appears next to the name of the
active step in the Sequence Display.
LabVIEW Test Executive Reference Manual 2-2 www.natinst.com



Chapter 2 Getting Started

xt to 
 

 

VI 
ou 
, 
ort 

or. 

 date 
sting 

an 
ian 

 

ence 
p 

e 
isplay. 
• After each step runs, the PASS/FAIL status of the step appears ne
the name of the step in the Sequence Display, and the step result
appears in the Test Display.

When the sequence execution completes, the Test Executive calls the
default Post-UUT callback VI, which displays a PASS/FAIL banner. 

5. Click the OK  button in the PASS/FAIL banner. The Test Executive 
begins the next test cycle by calling the default Pre-UUT callback 
again. The Test Executive continues to cycle to the next UUT until y
click the Stop button in the UUT Information dialog box. At that point
the Test Executive exits the Test UUT loop and calls the Test Rep
callback VI to generate the test report.

6. To view the test report after execution completes, click the View Test 
Report button. The report appears in the Test Display string indicat

The Test Report includes the name and description of the sequence, the
and time that testing ended, the name of the user, and the results of te
for each UUT.

Changing to Technician Level
Perform the following steps to change from Operator level to Technici
level and to see the more flexible execution capabilities at the Technic
level.

1. Click the Login button on the Test Executive front panel. 

2. In the Login dialog box, type the word technician  in the Password 
field and click the OK  button. The Single Pass, Run Step(s), and 
Loop Step(s) buttons appear in the lower left corner of the Test 
Executive front panel. 

3. If you do not see these buttons, click the Login button again and retype
the word technician  in the Password field. Remember that the 
password is case sensitive.

Executing Individual Steps and 
Using Single Pass Mode
To run an individual step, click the name of the desired step in the Sequ
Display and click the Run Step(s) button. Notice that only the selected ste
runs. You can select multiple steps to run in Run Step(s) mode by 
<Shift>-clicking them in the Sequence Display. Run Step(s) mode 
selectively runs individual steps for diagnosis and troubleshooting. Th
status of each step appears next to the step names in the Sequence D
To execute steps repeatedly, click the Loop Step(s) button. 
© National Instruments Corporation 2-3 LabVIEW Test Executive Reference Manual



Chapter 2 Getting Started

t 
e 

. 
 click 
rt 

 

ull 

. 
 

 
, 

st 
st 

 The 
ime 

ne of 
nd 
Now, click the Single Pass button. Clicking this button runs the entire tes
sequence once. When running in Single Pass mode, the Test Executiv
skips all sequence callback VIs except for the Test Report callback VI
Notice that the sequence executes one time and then stops. When you
the View Test Report button, the Test Executive displays the Test Repo
as it did at the Operator level.

Quitting the Test Executive
Click the Quit  button to stop execution of the Test Executive. When the
Test Executive stops running, LabVIEW automatically quits if you are 
logged in at the Operator or Technician levels. Launch the LabVIEW f
development system before proceeding to the next examples.

Examining a Test Program
In this section, you examine a sample test program written in LabVIEW
You need this information only if you plan to write LabVIEW tests and
incorporate them into test sequences. You must be familiar with 
the LabVIEW full development environment to complete this example.
For detailed information about the topics in this section, see Chapter 4
Creating Tests and Test Sequences.

Perform the following steps to learn how to build a LabVIEW test.

1. Launch LabVIEW, if you have not already done so.

2. Open random.vi , located in TESTS\TEST_VIS.LLB  in the Test 
Executive installation directory. 

random.vi  illustrates the basic structure of a LabVIEW test that the Te
Executive runs. The front panel of the VI contains two clusters—the Te
Data cluster and the error out cluster.

The Test Data cluster transmits information about the result of the test.
error out cluster transmits information the Test Executive uses for run-t
error handling. In this example, use random.vi  as if it were a new test VI 
to step through the test sequence creation process.

3. Open the block diagram of random.vi  by selecting Windows»Show 
Diagram from the menu on the front panel. 

This VI generates two random numbers, Limit  and Measurement. The VI 
compares Limit  to Measurement, setting the PASS/FAIL flag in the 
Test Data cluster to the result of the comparison. This VI also passes o
the random numbers and a comment as the Numeric Measurement a
LabVIEW Test Executive Reference Manual 2-4 www.natinst.com



Chapter 2 Getting Started

these 

ick 

 

e 
ty. 

 
 of 

f 
nd 

 

t 
Comment elements of the Test Data cluster. The Test Executive uses 
elements when you create a test sequence that calls this VI.

4. Close random.vi . Do not save any changes.

Editing a Test Sequence
This section describes how to set up and edit a test sequence.

1. Start the Test Executive.

a. Launch LabVIEW if you have not already done so.

b. Select Project»Test Executive»Launch Test Executive… to run 
the default operator interface VI. Type the word developer  in the 
Password field of the Login dialog box and click the OK  button. 
A row of six buttons appears in the upper left corner of the 
operator interface front panel. If you do not see six buttons, cl
the Login button and retype developer  as the password. 
Remember that the password is case sensitive.

2. Edit the Sequence

• Click the Edit  button to invoke the Sequence Editor. 

The first time you invoke the Sequence Editor, there is a delay
while the Test Executive loads the editor. This loading delay 
occurs only the first time you open the Sequence Editor. Notic
that the list box at the top of the Sequence Editor panel is emp
This list box, called the sequence list, shows the defined steps for
the current sequence. With the Sequence Editor, you input all
the specifications required to define a test sequence.

3. Create a Step.

Complete the following steps to add random.vi  to the sequence.

a. Click the New Step button to add a new, untitled step to the top o
the sequence list. Notice that the edit controls are displayed a
that the edit control Name is automatically selected. Also notice 
that the ring control Type  is set to LabVIEW Test. Because this 
example involves only LabVIEW-based test programs, do not 
change the Type setting.

b. Type the name Random-Boolean  into the Name control and press
<Enter> (<return>, <Return>). Notice that Random-Boolean  
now appears in the sequence list. 

c. Click the Select Resource... button to choose the VI that you wan
to run for this step. For this example, select random.vi . Notice 
© National Instruments Corporation 2-5 LabVIEW Test Executive Reference Manual



Chapter 2 Getting Started

h 

e a 
r of 
nce 
 a 
ny of 

 
or 
nter 
ple, 

t 

d 

e 
 

that the Resource control is automatically filled with the VI pat
you selected. 

4. Configure the Limit Specification.

To determine if a step passes or fails, the Test Executive must hav
limit specification. The Test Executive looks at the Test Data cluste
the test VI and applies the limit checking you specify in the Seque
Editor to that data. The Test Data cluster contains a Boolean flag,
numeric measurement, and a string measurement. You can use a
these elements to determine if the VI passes.

a. Click the Set Limit Specification button to view the Set Limit 
Specification dialog box. Click the Comparison Type ring 
control to see the available types of checking. If you choose a
numeric comparison, you must enter the numeric limits used f
the comparison. If you choose a string comparison, you must e
a reference string to be used for the comparison. For this exam
set Comparison Type to Boolean .

b. Click the OK  button to confirm the limit specification. Notice tha
the Limit Specification control now contains the text {BOOL} .

5. Add Another Step

Now, perform the following steps to add another step below 
Random-Boolean and change the limit specification to numeric. 

a. Make sure that the Insert control is set to below  and click the New 
Step button. The new step appears below the currently selecte
step in the sequence list. Name the new step Random-Numeric . 

b. Click the Select Resource... button and again select random.vi . 
Then, click the Set Limit Specification button and set the 
Comparison Type to numeric comparison, GELE (>= && <=) , 
which means the numeric value returned by the test VI must b
greater than or equal to a lower limit and less than or equal to an
upper limit. Set the lower limit to 0.00  and the upper limit to 
0.50 , as shown in the following illustration.
LabVIEW Test Executive Reference Manual 2-6 www.natinst.com



Chapter 2 Getting Started

l, 
is 

ear 
e 

ce. 

cify 

 

With the Format control, you set the numeric limits to fractiona
scientific, decimal, hexadecimal, octal, or binary notation. For th
example, use fractional notation. 

c. Click the OK  button to accept the limit specifications. Your 
completed test sequence appears in the sequence list of the 
Sequence Editor dialog box.

d. To modify the definition of a step, click the step you want to 
modify in the sequence list. The specifications of the step app
in the edit fields. Make any changes to these edit fields, and th
Test Executive automatically applies the changes to the step.

6. Set Dependencies.

Next, set up a dependency between the two steps in your sequen

a. Click the Edit Dependencies button, which opens the 
Dependency Editor.

b. To set up a dependency between the two steps, you must spe
that Random-Boolean  must pass for Random-Numeric  to 
execute. If Random-Numeric  is not selected in the step list box,
select it. Notice that the Dependencies list box is empty, 
indicating that Random-Numeric  has no dependencies. 
© National Instruments Corporation 2-7 LabVIEW Test Executive Reference Manual



Chapter 2 Getting Started

s 

 to 

ed 

 
the 
ve 

n 

ow 
and 
se are 
e Test 
ities 
c. To add the desired dependency, select Random-Boolean  in the 
New Determinants list box and click the » button. This adds a 
FAIL  dependency on Random-Boolean  to the Dependency list 
for Random-Numeric . (Double-clicking Random-Boolean  also 
allows you to add this FAIL dependency.) Change the FAIL 
dependency to a PASS dependency by clicking the Change to 
PASS button. (Double-clicking the FAIL dependency also allow
you to change this dependency from FAIL to PASS.)

d. Click the OK  button to keep the new dependencies and return
the Sequence Editor. 

7. Run the Sequence

You are now ready to run your test sequence. 

a. Return to the main Test Executive front panel by selecting 
File»Exit. After you save the new sequence, it appears in the 
Sequence Display list box. 

b. Click the Test UUT button to run the sequence. The Test 
Executive automatically determines the PASS/FAIL status bas
on the values placed in the Test Data cluster. Perform the 
following steps to view your specification.

• After you test several UUTs, click the Stop button in the UUT 
Information dialog box. 

• To see the data generated by random.vi  for each test, click 
the View Test Report button. 

8. Quit the Test Executive from the Developer Level

Click the Quit  button to quit the Test Executive. The Test Executive
prompts you to confirm or cancel the Quit operation. Proceed with 
operation, and the Test Executive automatically prompts you to sa
the sequence you created. 

When you run the Test Executive at the Developer level, the applicatio
stays in memory after it finishes executing.

If you followed the examples presented in this chapter, you now know h
to operate the Test Executive, develop test programs using LabVIEW, 
use the Sequence Editor to create sequences that use these VIs. The
the fundamental steps required to create test sequences that run in th
Executive. The remaining chapters of this manual describe the capabil
of the Test Executive in greater detail.
LabVIEW Test Executive Reference Manual 2-8 www.natinst.com



Chapter 2 Getting Started

cated 
y. 
ou 
ces, 

t 

ted 

e 

 

d 

 

e 

is 
Example Sequences
The Test Executive package includes nine test sequence examples lo
in the EXAMPLES subdirectory of the Test Executive installation director
If you quit the Test Executive from the Operator or Technician level, y
need to restart the Test Executive to see these examples. The sequen
listed below, demonstrate different aspects of the Test Executive.

• COMMENT.SEQ executes tests that use the Comment field to log tes
results in a customized format. When you run COMMENT.SEQ, notice 
that test results in the Test Report contain multiple, custom-format
lines rather than the standard formatted lines. 

• COMPUTER.SEQ contains a sequence that includes Pre-run and 
Post-run VIs (VIs that run before or after a test sequence), multipl
dependencies, and tests that use a variety of comparison types. 

• RTERROR.SEQ contains the same tests as COMPUTER.SEQ but 
generates a run-time error during the test to illustrate the Run-time
Error dialog boxes.

• UNDEFINE.SEQ demonstrates how the Test Executive handles 
sequence files containing invalid information. This condition is calle
a parsing error. The Parsing Error dialog box opens when you try to 
load UNDEFINE.SEQ. UNDEFINE.SEQ is not meant to run. Its purpose
is to show how the Test Executive handles a parsing error.

• comp_new.seq  contains a sequence that calls subsequences.

• cpu_lv.seq  contains a sequence that is called by comp_new.seq .

• cpu_diag.seq  contains a sequence that is called by comp_new.seq .

• computer_cvi.seq  (Windows NT/98/95 only) contains a sequenc
that calls tests developed in LabWindows/CVI.

• cpu_cvi.seq  (Windows NT/98/95 only) contains a sequence that 
called by computer_cvi.seq .
© National Instruments Corporation 2-9 LabVIEW Test Executive Reference Manual



© National Instruments Corporation 3-1 LabVIEW Test Executive 
3

ront 
n. 
les 

ree 

g 

 a 
nce 
llback 

 the 

 from 
p 
Operating the Test Executive

This chapter describes the operation of the main Test Executive front 
panel—the controls, indicators, and operator dialog boxes. The main f
panel is the user interface for both development and run-time operatio
When at the Technician and Operator levels, the Test Executive disab
some of the buttons. 

Controls
The controls on the Test Executive front panel access the following th
areas of operation:

• Sequence file operations and login

• Execution

• Display

The rest of this section describes the purpose of each control, groupin
them according to their areas of operation.

Open
The Open button invokes the Select Sequence callback VI for selecting
test sequence to load into memory from a file. Selecting a valid seque
file opens the sequence and loads the step resource and sequence ca
VIs into memory. A delay occurs proportional to the number and size of
step resources being loaded. The Open button is visible at all operating 
levels. The default key assignment for Open is <F2>.

Close
The Close button closes the current sequence visible in the Sequence 
Display and unloads the step resources and the sequence callback VIs
memory. A delay occurs proportional to the number and size of the ste
resources being unloaded. The Close button is visible at all operating 
levels. The default key assignment for Close is <F3>.

<F2>

<F3>
Reference Manual



Chapter 3 Operating the Test Executive

 
el 

he 

t 

 

vel. 

t a 

e 

e 

The 
Quit
The Quit  button causes the Test Executive to stop execution. After you
click the Quit  button, the Test Executive prompts you to confirm or canc
the Quit operation. The default key assignment for Quit  is <F10>.

Note If the Test Executive is at the Operator or Technician operating level, clicking t
Quit  button stops the Test Executive and quits LabVIEW.

Login
The Login button calls the Login callback VI. The default Login 
callback VI displays a Login dialog box for entering your name and/or 
password. The Login button is visible at all operating levels. The defaul
key assignment for Login is <F4>.

Edit
The Edit  button invokes the Sequence Editor. There is a short loading
delay when you first open the Sequence Editor. The Edit  button is visible 
only when the Test Executive is running at the Developer operating le
The default key assignment for Edit  is <F5>.

New
The New button loads a new Untitled sequence, displaying it in the 
Sequence Display. You can have only one Untitled sequence loaded a
time. The New button is visible only when the Test Executive is at the 
Developer operating level. The default key assignment for New is <F6>.

Test UUT
The Test UUT button initiates repetitive execution of the currently visibl
test sequence for UUT testing. (See the Execution Model section of 
Chapter 1, Introduction, for information about the Test UUT mode of 
execution.) The Test UUT button is visible at all operating levels. The 
default key assignment for Test UUT is <Shift-F1>.

Single Pass
The Single Pass button initiates a single execution of the currently visibl
test sequence. (See the Execution Model section of Chapter 1, Introduction, 
for information about the Single Pass mode of execution.) The Single Pass 
button is visible only at the Developer and Technician operating levels. 
default key assignment for Single Pass is <Shift-F2>.

<F10>

<F4>

<F5>

<F6>

<Shift-F1>

<Shift-F2>
LabVIEW Test Executive Reference Manual 3-2 www.natinst.com



Chapter 3 Operating the Test Executive

ng 
 
next 
en 
 

d 

 a 
t 

st 

t for 

ly 

ic 
ne 

 in 

e 
Abort
The Abort  button stops sequence execution after the currently executi
step completes. If you click the Abort  button while in Test UUT mode, the
Test Executive stops testing on the current UUT and proceeds to the 
UUT. The default Post-UUT callback VI displays an ABORT banner wh
you abort testing. The Abort  button is visible at all operating levels but is
active only when a test is running. The default key assignment for Abort  is 
<Shift-F10>.

Note The Test Executive engine does not log complete result information for aborte
sequences. Therefore, the test report that the Text Executive generates will contain 
incomplete result information if you abort the execution of a test sequence.

Abort Loop
The Abort Loop  button appears only when the Test Executive loops on
failing step. Clicking the Abort Loop  button stops the loop execution. Tes
sequence execution then continues with the next step. The Abort Loop  
button appears at all operating levels. The default key assignment for 
Abort Loop  is <Shift-F9>.

Run Step(s)
The Run Step(s) button executes the steps currently selected in the 
Sequence Display. After the step runs, the Test Executive calls the Po
Run-Loop Test Callback VI. The Run Step(s) button is visible only at the 
Developer and Technician operating levels. The default key assignmen
Run Step(s) is <Shift-F3>.

Loop Step(s)
The Loop Step(s) button initiates repetitive execution of the step current
selected in the Sequence Display. The Loop Step(s) button is visible only 
at the Developer and Technician operating levels. When you select Loop 
Step(s), the Loop Parameters dialog box appears.

With the Loop Parameters dialog box, you can either execute a specif
number of iterations or loop until a step fails (if you have selected only o
step for execution). To specify a number of iterations, make sure the Loop 
until FAIL  checkbox is not selected and enter the number of iterations
the Loop field. To loop until a step fails, select the Loop until FAIL  
checkbox. To confirm your inputs, click the OK  button. To cancel, click the 
Cancel button. After the steps finish looping, the Test Executive calls th

<Shift-F10>

<Shift-F9>

<Shift-F3>

<Shift-F4>
© National Instruments Corporation 3-3 LabVIEW Test Executive Reference Manual



Chapter 3 Operating the Test Executive

 to run 
AIL 

, it 

s 
s. 

ence 
 

 or 
is 
e the 

tes by 

ly 
p for 

g this 
 the 
Post-Run Loop Test callback VI. The default key assignment for Loop 
Step(s) is <Shift-F4>.

Note When you run steps using the Run Step(s) or Loop Step(s) button, the Test 
Executive disregards the Run Mode setting for the selected step and forces the step
normally. In contrast, if the Run Mode setting of a test is Skip, Force PASS, or Force F
in Test UUT or Single Pass mode, the Test Executive does not run the step. Instead
generates a step result of Skip, PASS, or FAIL. 

Stop On Any Failure
If you select the Stop On Any Failure checkbox, the Test Executive stop
executing the current sequence whenever a step in that sequence fail
When you clear this checkbox, the Test Executive runs the current 
sequence as normal. Changes to this box do not affect the default sequ
setting for Stop On Any Failure. You must change this default setting in
the Sequence Editor. The Stop On Any Failure checkbox is visible at all 
operating levels. The default key assignment for Stop On Any Failure is 
<Shift-F5>.

Sequence Runtime Updates?
When you select the Sequence Runtime Updates? checkbox, the Test 
Executive updates the Sequence Display whenever a new step starts
finishes running, or another test sequence runs. When you unselect th
box, the Test Executive does not update the Sequence Display. To mak
Test Executive run as fast as possible, disable Sequence Display upda
clearing this checkbox. The Sequence Runtime Updates? checkbox is 
visible at all operating levels. The default key assignment for Sequence 
Runtime Updates? is <Shift-F6>.

Run Mode
The Run Mode ring control displays the run mode setting for the current
selected step. You also use this control to change the run mode of a ste
diagnostic purposes. Changes made to the run mode of any step usin
control do not affect the default run mode of the step. You must change
default value in the Sequence Editor. The Run Mode control is visible only 
at the Developer and Technician operating levels. The default key 
assignment for Run Mode is <Shift-F7>.

<Shift-F5>

<Shift-F6>

<Shift-F7>
LabVIEW Test Executive Reference Manual 3-4 www.natinst.com



Chapter 3 Operating the Test Executive

h 

e 
y 

st 
 

I. 
I 
mpts 

hen 

 fast 
he 
Clear Step Status
The Clear Step Status button clears the Step Status/Result field for eac
step in the Sequence Display. The Clear Step Status button is visible at all 
operating levels. The default key assignment for Clear Step Status is 
<Ctrl-F1> (<command-F1>, <meta-F1>, <Alt-F1>).

Clear Test Display
The Clear Test Display button clears the contents of the Test Display. Th
Clear Test Display button is visible at all operating levels. The default ke
assignment for Clear Test Display is <Ctrl-F2> (<command-F2>, 
<meta-F2>, <Alt-F2>).

View Test Report
The View Test Report button displays the current Test Report in the Te
Display. The View Test Report button is visible at all operating levels. The
default key assignment for View Test Report is <Ctrl-F3> 
(<command-F3>, <meta-F3>, <Alt-F3>).

Sequence Report
The Sequence Report… button invokes the Sequence Report callback V
The default Sequence Report callback VI generates a formatted ASCI
report for the current sequence and displays a Save dialog box that pro
you to save the report. The Sequence Report… button is visible at all 
operating levels. The default key assignment for Sequence Report… is 
<Ctrl-F4> (<command-F4>, <meta-F4>, <Alt-F4>).

Test Runtime Updates?
When you select the Test Runtime Updates? checkbox, the Test 
Executive updates the Test Display each time a step finishes running. W
you clear this checkbox, the Test Executive does not update the Test 
Display during sequence execution. To make the Test Executive run as
as possible, disable Test Display updates by clearing this checkbox. T
Test Runtime Updates? checkbox is visible at all operating levels. The 
default key assignment for Test Runtime Updates? is <Ctrl-F5> 
(<command-F5>, <meta-F5>, <Alt-F5>).

<Ctrl-F1>

<Ctrl-F2>

<Ctrl-F3>

<Ctrl-F4>

<Ctrl-F5>
© National Instruments Corporation 3-5 LabVIEW Test Executive Reference Manual



Chapter 3 Operating the Test Executive
Operator Interface Key Assignments
To summarize, Table 3-1 lists the default key assignments for each 
operator interface control. 

Table 3-1.  Default Operator Interface Key Assignments

Control Default Key Assignment

Open <F2>

Close <F3>

Login <F4>

Edit <F5>

New <F6>

Quit <F10>

Test UUT <Shift-F1>

Single Pass <Shift-F2>

Run Step(s) <Shift-F3>

Loop Step(s) <Shift-F4>

Stop On Any Failure <Shift-F5>

Sequence Runtime Updates? <Shift-F6>

Run Mode <Shift-F7>

Abort Loop <Shift-F9>

Abort <Shift-F10>

Clear Step Status <Ctrl-F1> (<command-F1>, <meta-F1>, <Alt-F1>)

Clear Test Display <Ctrl-F2> (<command-F2>, <meta-F2>, <Alt-F2>)

View Test Report <Ctrl-F3> (<command-F3>, <meta-F3>, <Alt-F3>)
LabVIEW Test Executive Reference Manual 3-6 www.natinst.com



Chapter 3 Operating the Test Executive

ve 

 ring 
the 
 the 
 in 

t to 
 
lyph.

hat 
Indicators
This section describes the displays and indicators on the Test Executi
front panel.

Sequence Display
The Sequence Display is a control that contains two parts. The first is a
control that allows the user to select the sequence currently visible in 
second part, a multiple-selection list box. During sequence execution,
ring control also indicates the filename of the current sequence visible
the list box.

Each line in the list box portion of the display has three fields. From lef
right, the fields are Run Mode, Step Name, and Step Status/Result. In
addition, steps that are sequences are marked with the closed-folder g

Note The fields in the Sequence Display are not labeled, so take special notice of w
occurs in each field.

The Run Mode field indicates the setting of the Run Mode parameter for 
the step. Table 3-2 lists the possible Run Mode field values and their 
meanings.

Sequence Report <Ctrl-F4> (<command-F4>, <meta-F4>, <Alt-F4>)

Test Runtime Updates? <Ctrl-F5> (<command-F5>, <meta-F5>, <Alt-F5>)

Table 3-2.  Run Mode Field Values

Value Meaning

blank 
(no symbol)

Step runs normally.

S Step is skipped.

P Step is skipped with a forced PASS result.

F Step is skipped with a forced FAIL result.

Table 3-1.  Default Operator Interface Key Assignments (Continued)

Control Default Key Assignment
© National Instruments Corporation 3-7 LabVIEW Test Executive Reference Manual



Chapter 3 Operating the Test Executive

 
lect 
eld 

 

nk, 
. 
n 

e 
The Step Name field shows the name of the step.

The Step Status/Result field is set to RUNNING during the step execution to
indicate the active step. After the step completes, the field is set to ref
the result of the step. Table 3-3 lists the possible Step Status/Result fi
values and their meanings.

Notice the difference between NONE and UNKNOWN. If the limit 
specification for a step is set to Log  only , the Test Executive is instructed
to log the step data but not make a comparison. The step result is NONE 
because there is no result. If the limit specification for a step is left bla
however, the Test Executive takes no action other than to run the step
Because there is no limit specification, the Test Executive has not bee
instructed on what to do with the step data, so the step result is UNKNOWN.

Test Display
The Test Display shows three types of information:

• Result of each step, if Test Runtime Updates? is enabled

• Error messages

• Test report

Table 3-3.  Step Status/Result Field Values

Value Meaning

SKIP Step did not execute.

PASS Step result satisfied limit specification.

FAIL Step result did not satisfy limit specification.

NONE Step data was logged, but no comparison was mad
because the limit specification was set to Log only .

UNKNOWN No step data was logged, and no comparison was 
made because the limit specification was left blank.

ERROR Run-time error occurred during step execution.
LabVIEW Test Executive Reference Manual 3-8 www.natinst.com



Chapter 3 Operating the Test Executive

at 

 
me 

tep 
value 
d to 
imit 
ue 
of 
).
Result of Each Step
After a step executes, the Test Display shows the complete result of th
step. The format of a step result is as follows:

Step name Result
Comment (optional, might be multiple lines)

Measurement Comparison Lower Limit
Upper Limit or
String Limit

Execution Time Time (in ms)

Notice that the number of lines that comprise the step result varies, 
depending on the type of comparison made and whether a step logs a
comment. A step result always contains at least one line listing the na
and result of the step. The result is the same value shown in the 
Step Status/Result field of the Sequence Display. 

The format and content of the Comment line(s) is determined by the s
that logged the comment. The Measurement line shows the measured 
returned by the step. Comparison shows the type of limit checking use
determine if the step passed. Lower and Upper Limits are the numeric l
values used for PASS/FAIL determination. String Limit is the string val
used for PASS/FAIL determination. Table 3-4 lists the possible values 
Comparison and their relation to the limits (Condition for Step to Pass

Table 3-4.  Comparison Values and Relative Limits

Value Condition for Step to Pass

EQ (==) Numeric Measurement = Lower Limit

NE (!=) Numeric Measurement!= Lower Limit

GT (>) Numeric Measurement > Lower Limit

LT (<) Numeric Measurement < Lower Limit

GE (>=) Numeric Measurement >= Lower Limit

LE (<=) Numeric Measurement <= Lower Limit

GTLT (> && <) Numeric Measurement > Lower Limit and < Upper Limit

GTLE (> && <=) Numeric Measurement > Lower Limit and <= Upper Limit
© National Instruments Corporation 3-9 LabVIEW Test Executive Reference Manual



Chapter 3 Operating the Test Executive

e in 

rror 

 Test 
r in 

hen 
tes will 

 a 
ence. 
The Execution Time line shows the execution time of the step resourc
milliseconds, if the step was executed.

Error Messages
Error messages also appear in the Test Display. One of two types of e
messages can appear. The first is a parsing error. If a test sequence 
references an undefined resource or contains an invalid limit or 
dependency, a description of the error appears in the Test Display. 

The second type of error message displays run-time errors. When the
Executive detects a run-time error, it displays a description of the erro
the Test Display.

Note The Test Executive engine does not log complete result information for steps w
errors occur in a sequence. Therefore, the test report that the Test Executive genera
contain incomplete result information in the event of an error.

The Test Report
You also view the Test Report in the Test Display. The Test Report is
record of the testing results for the most recent execution of a test sequ
Figure 3-1 shows the format of a Test Report.

GELT (>= && <) Numeric Measurement >= Lower Limit and < Upper Limit

GELE (>= && <=) Numeric Measurement >= Lower Limit and <= Upper Limit

STRCMP String Measurement = String Limit

Table 3-4.  Comparison Values and Relative Limits (Continued)

Value Condition for Step to Pass
LabVIEW Test Executive Reference Manual 3-10 www.natinst.com



Chapter 3 Operating the Test Executive
Figure 3-1.  Sample Test Report

Report
Header

Results for
First UUT

Results for
Second UUT

Result for
One Step

Results for 
Sequence Step
© National Instruments Corporation 3-11 LabVIEW Test Executive Reference Manual



Chapter 3 Operating the Test Executive

is 

ion 
is 

test 
 

nd 

ult, 
ing 
ys 
Status
The Status indicator appears directly above the Sequence Display. Th
indicator shows the current operating status of the Test Executive. 
Table 3-5 lists the possible values of the Status indicator and their 
meanings.

Sequence Name
The Sequence Name indicator appears above the Sequence Informat
box. If a new sequence is currently visible in the Sequence Display, th
indicator displays Untitled Sequence . When a named sequence is 
displayed, the Sequence Name indicator displays the filename of the 
sequence. During sequence execution, the Sequence Name indicator
always displays the name of the top-level sequence.

Sequence Information
The Sequence Information indicator appears above the Test Display a
below the Sequence Name. When a sequence is displayed, the Test 
Executive updates this box to display user-defined information. By defa
the Sequence Information box displays the sequence description. Dur
sequence execution, the Sequence Information indicator always displa
the information for the top-level sequence.

Table 3-5.  Status Indicator Values

Value Meaning

STOPPED No test sequence currently running.

RUNNING Test sequence is running.

LOOPING [n] Test sequencing is looping on a step and is in the nth 
iteration.

QUIT Test Executive has stopped executing.
LabVIEW Test Executive Reference Manual 3-12 www.natinst.com



Chapter 3 Operating the Test Executive

hat 
ction 

 
hen 
e 

and 
t 
he 

st 

e 
ard 
 

e 

g 
Operator Dialog Boxes
During operation of the Test Executive, several dialog boxes appear t
require user action. This section describes these dialog boxes and the a
that each dialog box requires. 

Default Login Dialog Box
The default Login dialog box prompts you to enter your name and 
password.

The password sets the operating level of the Test Executive. The login
dialog box appears when the Test Executive first starts running and w
you click the Login button. In the dialog box, use the <Tab> key to mov
between the Name and Password fields. Click the OK  button or press 
<Enter> (<return>, <Return>) to confirm the entries made in the Name 
Password inputs. Click the Cancel button to remove the dialog box withou
making any changes to the existing name and password. If you click t
Cancel button when the Test Executive first starts running, the Test 
Executive runs at the Operator level.

For information about modifying the Default Login dialog box, refer to 
Chapter 5, Modifying the Test Executive.

Default Select Sequence Dialog Box
The default Select Sequence file dialog box prompts you to select a te
sequence file to open.

The default Select Sequence file dialog box appears when you click th
Open button on the operator interface panel. This dialog box is the stand
LabVIEW file dialog box, which is initially configured to show only those
files ending with an SEQ extension. If you select a valid test sequence fil
and click the OK  button, the Test Executive opens the selected test 
sequence. If you click the Cancel button, the Test Executive closes the 
Select Sequence file dialog box and performs no operation.

For information about modifying the default Select Sequence file dialo
box, refer to Chapter 5, Modifying the Test Executive.
© National Instruments Corporation 3-13 LabVIEW Test Executive Reference Manual



Chapter 3 Operating the Test Executive

he 
lid 
) 

x, 

AIL 
t 

 

er 

. The 
de. 

to 
Default UUT Information Dialog Box
The default UUT Information dialog box prompts you to enter a serial 
number for the device to be tested on the next execution of the test 
sequence. 

The default UUT Information dialog box appears only when you click t
Test UUT button. The Test Executive accepts any ASCII string as a va
serial number. Click the OK  button or press <Enter> (<return>, <Return>
to confirm the serial number. Click the Stop button to stop UUT testing.

For information about modifying the default UUT Information dialog bo
refer to Chapter 5, Modifying the Test Executive.

Default Test Failed Dialog Box
The default Test Failed dialog box appears when a step fails and the F
Action of the step is set to Callback . The dialog box prompts you to selec
an action—Continue, Stop, or Retry. 

If you click the Continue button, the Test Executive logs the step failure
and continues with the next step in the sequence. If you click Stop, the Test 
Executive stops testing the UUT. If you click the Retry button, the Test 
Executive runs the failed step again.

For information about modifying the default Test Failed dialog box, ref
to Chapter 5, Modifying the Test Executive.

Default PASS/FAIL/ABORT Banners
The default PASS/FAIL/ABORT banners indicate whether the current 
UUT passed, failed, or was aborted. In Test UUT mode, one of these 
banners appears at the end of test sequence execution for each UUT
default PASS/FAIL/ABORT banners do not appear in Single Pass mo
Click the OK  button or press <Enter> (<return>, <Return>) to 
acknowledge a banner and continue testing.

For information about modifying the PASS/FAIL/ABORT banners, refer 
Chapter 5, Modifying the Test Executive.
LabVIEW Test Executive Reference Manual 3-14 www.natinst.com



Chapter 3 Operating the Test Executive

ere 
ng 

me 
ce. 
n VI.

 that 

e 
Run-Time Error Warning Dialog Box
A Run-Time Error dialog box appears when a step reports an error. Th
are two types of Run-Time Error dialog boxes that appear. The followi
illustration shows the general Run-Time Error dialog box.

The dialog box shown in the following illustration appears when a run-ti
error occurs and you have specified a Post-Run VI for the test sequen
When this prompt appears, you can choose whether to run the Post-Ru

Parsing Error Dialog Box
The Parsing Error dialog box appears when the Test Executive detects
a test sequence contains one of the following errors:

• Invalid step resource

• Invalid step name

• Invalid step type

• Invalid limit specification

• Invalid dependency expression

• Invalid GOTO destination

After clicking the OK  button in the Parsing Error dialog box, you can us
the Sequence Errors dialog box to find and fix the errors in the test 
sequence. To show the Sequence Errors dialog box, select 
Sequence»Sequence Errors... in the Sequence Editor. For more details 
about the Sequence Errors dialog box, see Chapter 4, Creating Tests and 
Test Sequences.
© National Instruments Corporation 3-15 LabVIEW Test Executive Reference Manual



© National Instruments Corporation 4-1 LabVIEW Test Executive 
4

 test 
n 
s 

nt 
izard 
n 

Is. 
s for 
e 

d 

n its 
nfo 

ne 
mpts 
Creating Tests and Test 
Sequences

This chapter describes the process of creating new test programs and
sequences for execution by the Test Executive. The Test Executive ca
call two different types of test programs—LabVIEW VIs and C function
(Windows NT/98/95 and UNIX).

Writing LabVIEW Tests
The LabVIEW VIs called by the Test Executive must have a specific fro
panel and connector pane structure. The Test Executive includes a w
to help you create new Test VIs that meet this specification, or you ca
create test VIs manually.

To run the wizard, select Project»Test Executive»Utilities»VI Wizard…. 
In the wizard, you can open template VIs for the various types of test V
The template VIs contain the correct front panels and connector pane
use with the Test Executive. To use a template VI, add your code to th
block diagram and save the VI.

You also can create test VIs manually. Use the type definitions include
with the Test Executive, which you can access by selecting Controls»User 
Controls»Test Executive Typedefs.

Every test VI must contain the Test Data cluster and error out cluster o
front panel and connector pane. The input buffer string and invocation i
cluster are optional.

Note If the Test Executive calls a test VI that does not have the correct connector pa
configuration, it attempts to assign the correct connector pane to the VI and then pro
you to save the VI with the new connector pane.
Reference Manual



Chapter 4 Creating Tests and Test Sequences

 by 

inal 

 

Required Indicators

Test Data Cluster
A test VI uses the Test Data cluster for transmitting result data needed
the Test Executive to make a PASS/FAIL determination. 

Table 4-1 lists the elements contained in the Test Data cluster.

You must wire the Test Data cluster to the shaded connector pane term
on your test VI, shown in the following illustration.

When you create a test VI, use the Test Executive typedef TYPEDEF-Test  
Data.ctl  for result information. For more information about Test 
Executive typedefs, see Chapter 5, Modifying the Test Executive.

Table 4-1.  Test Data Cluster Elements

Name Type Meaning

PASS/FAIL 
Flag

Set by test VI to indicate whether test 
passed or failed. This flag is used if the 
limit specification of the test is 
Boolean.

Numeric 
Measurement

Numeric measurement value used by 
Test Executive for Pass/Fail evaluation.

String 
Measurement

String value used by Test Executive for 
Pass/Fail evaluation.

User Output String used to hold test-specific output 
data. Output data of any type can be 
flattened to string and passed out in this
buffer.

Comment Comment from VI that is included in 
the Test Report.
LabVIEW Test Executive Reference Manual 4-2 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

 the 

ine if 
en 
rror 

inal 

es 
ify 
ing 

sing 
 this 
Error Cluster
A test VI must contain an error out cluster. Table 4-2 lists the elements
error out cluster contains. 

The Test Executive uses the contents of the error out cluster to determ
a run-time error occurs and takes appropriate action, if necessary. Wh
you create a test VI, use the standard LabVIEW error out cluster for e
information.

You must wire the error out cluster to the shaded connector pane term
on your test VI, shown in the following illustration.

Optional Inputs

Input Buffer
A test VI optionally may have a string control on its front panel that serv
as an input buffer. This input buffer allows your test sequence to spec
input data for the test VI. The Test Executive does not define the mean
or content of the input buffer. It is a general-purpose mechanism for pas
any data into a test VI. The test VI defines the meaning and content of
buffer. To add an Input Buffer control to your test VI, use the Test 
Executive typedef TYPEDEF-Input Buffer.ctl . For more information 
about Test Executive typedefs, see Chapter 5, Modifying the Test 
Executive.

Table 4-2.  Error Cluster Elements

Name Type Meaning

Status True if an error occurred, False 
otherwise

Code 0 if no error, non-0 to indicate specific 
error

Source Name of the VI that caused the error 
and text description of the error
© National Instruments Corporation 4-3 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

 on 

 

e 
rrent 
est 

tor 

n a 
 
ns 
g 
You must wire the Input Buffer to the shaded connector pane terminal
your test VI, shown in the following illustration.

Invocation Information 
A test VI may have an Invocation Information cluster on its front panel
to receive run-time calling information from the Test Executive. The 
Invocation Information cluster contains information about the sequenc
being run, the UUT being tested, and the name and loop count of the cu
step. To add an Invocation Information control to your test VI, use the T
Executive typedef TYPEDEF-Invocation Information.ctl . For more 
information about Test Executive typedefs, see Chapter 5, Modifying the 
Test Executive.

You must wire the Invocation Information cluster to the shaded connec
pane terminal on your test VI, shown in the following illustration.

Writing C Tests (Windows NT/98/95 and UNIX)
C-based tests that can be called by the Test Executive are functions i
32-bit DLL (Windows NT/98/95) or shared library (UNIX) with a specific
functional prototype. These test functions are equivalent to the functio
called by the LabWindows/CVI Test Executive but can be created usin
any compiler capable of creating standard DLLs or shared libraries.

Test functions should have the following prototype:

void SampleTest(tTestData *data, tTestError *error);
LabVIEW Test Executive Reference Manual 4-4 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

t 

d 

il 
Test Data Structure
A test function uses the tTestData  structure to transmit data results tha
the Test Executive uses to determine if a test passed or failed. The 
tTestData  structure is defined in the following way:

typedef struct {

int32  result;

double measurement;

char   *inBuffer;

char   *outBuffer;

char   *modPath;

char   *modFile;

void   *hook;

int32  hookSize;

void   *mallocFuncPtr;

void   *freeFuncPtr;

} tTestData;

Table 4-3 lists the tTestData  structure parameters.

Table 4-3.  tTestData  Structure Parameters

Name Type Description

result 32-bit signed integer Set by test function to indicate whether test passe
(result=1) or failed (result=0). This flag is 
observed only if the test has been set to pass or fa
based on a Boolean comparison.

measurement 64-bit floating-point 
number

Measurement value used for Test Executive 
Pass/Fail evaluation.

inBuffer string pointer String passed in by the Test Executive.

outBuffer string pointer String passed out by the Test Executive.

modPath string pointer Directory path of file containing test function.

modFile string pointer Filename of file containing test function.

hook generic pointer Not used by the LabVIEW Test Executive.

hookSize 32-bit signed integer Not used by the LabVIEW Test Executive.
© National Instruments Corporation 4-5 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

ified 

ts 

 

The Test Executive allocates and frees an input buffer when one is spec
for the test. The test function must allocate the outBuffer  if needed (using 
the malloc()  function pointed to by mallocFuncPtr), but the Test 
Executive frees it. If your test function needs access to another file in i
directory (such as a LabWindows/CVI .uir  file), you can use the 
modPath and modFile fields to construct the filename. These fields help
you avoid problems if you later move the module containing the test.

Test Error Structure
A test function reports errors with the tTestError  structure. The 
tTestError  structure is defined in the following way:

typedef struct {

int32 errorFlag;

int32 errorLocation;

int32 errorCode;

char  *errorMessage;

} tTestError;

Table 4-4 lists the tTestError  structure parameters.

mallocFuncPtr generic pointer Function pointer to malloc()  function used to 
allocate outBuffer  and errorMessage in Test 
Error structure.

freeFuncPtr generic pointer Function pointer to free()  function pointer to be 
used in conjunction with the malloc()  function 
pointed to by mallocFuncPtr.

Table 4-4.  tTestError  Structure Parameters

Name Type Description

errorFlag 32-bit signed integer errorFlag=1 if an error occurred, errorFlag=0 
otherwise.

errorLocation 32-bit signed integer Not used by the LabVIEW Test Executive.

errorCode 32-bit signed integer errorCode=0 for no error, non-zero to indicate a 
specific error.

errorMessage string pointer Text description of error (allocated with 
mallocFuncPtr ).

Table 4-3.  tTestData  Structure Parameters (Continued)

Name Type Description
LabVIEW Test Executive Reference Manual 4-6 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

ny 
or 

 end 
ch as 
d to 

e 

. 
rror 

 
rrect 

 of 
s:
The Test Executive uses the contents of the tTestError  structure to 
determine if a run-time error occurred and takes appropriate action.

Compiling Test Functions
Test functions should be compiled using C calling conventions using a
compiler that can produce standard 32-bit DLLs (Windows NT/98/95) 
shared libraries (UNIX).

Creating Pre-Run and Post-Run VIs
Pre-run and Post-run VIs are special VIs that run at the beginning and
of each test sequence. They are used for test system configuration, su
turning on a vacuum pump or shutting down power supplies, as oppose
making measurements for a specific test. In general, the Pre-run and 
Post-run VIs always execute, regardless of the status of any test. If th
Pre-run or Post-run VI encounters a situation that prevents the test 
sequence from executing, it indicates the condition as a run-time error
Pre-run and Post-run VIs do not log data They simply return run-time e
information. 

Like standard LabVIEW tests, Pre-run and Post-run VIs must have the
clusters Test Data and error out on their front panels and wired to the co
connector pane terminals.

What is a Test Sequence?
A test sequence consists of a collection of data that describes the flow
test execution. The main components of a test sequence are as follow

• List of steps

• Pre-run VI (optional)

• Post-run VI (optional)

• Set of sequence callback VIs (optional)

• Dependencies for flow control based upon PASS/FAIL results

• Global flag for stopping testing on any failure

• Test report file information

• Description of the sequence

• Sequence load specification

• Sequence path specification
© National Instruments Corporation 4-7 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

ess. 
r 

e 

ed 

ts 

 its 

or 
ion 
What is a Step?
A step consists of a combination of specifications that tell the Test 
Executive how to perform a single execution element in the testing proc
Steps can be of four different types—LabVIEW Test, C Test, GOTO, o
Sequence. For LabVIEW Test, C Test, or Sequence steps, the 
specifications are as follows:

• Name

• Resource file for LabVIEW VI, DLL/shared library, or Test Executiv
sequence file

• Function name for C Tests only

• Limit Specification for determining PASS/FAIL status of step for 
LabVIEW Tests and C Tests only

• Dependency expression

• Load specification indicating whether the step resource is pre-load
or loaded dynamically

• Run Mode specifying whether step executes normally

• FAIL Action and maximum loop count if applicable

• Optional input specifiers (Input Buffer for LabVIEW Tests and C Tes
only, Invocation Information for LabVIEW Tests only)

• Panel Display specifier to indicate whether the test VI should show
panel at run time for LabVIEW Tests only

For GOTO, the step specifications are as follows:

• GOTO target

• Dependency expression

Creating or Editing a Test Sequence
To create or edit a test sequence, you must invoke the Sequence Edit
when the Test Executive is at the Developer operating level. This sect
describes the operation of the Sequence Editor. 
LabVIEW Test Executive Reference Manual 4-8 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

 

e 
r 
ne 
new 
on.

 

tly 
Editor 

 into 
e 

t 
Step Editing Elements

Insert
Use the above and below radio buttons to indicate where new steps are
inserted or pasted into the sequence list. If you select the above button, new 
steps are inserted or pasted above the currently selected element in th
sequence list. If you select the below button, new elements are inserted o
pasted below the currently selected element. If you select more than o
element in the sequence list, the Test Executive inserts or pastes the 
elements either above or below the first or last element in your selecti

New Step
When you click the New Step button, the Sequence Editor inserts a new
step into the sequence list. Use the above and below radio buttons to 
determine where the new step is inserted.

Copy Steps, Cut Steps, Delete Steps, Paste Steps, 
and Undo Step Edits
When you click the Copy Steps or Cut Steps button or select Edit»Copy 
Steps or Edit»Cut Steps, the Sequence Editor copies or cuts the curren
selected sequence steps, including groups of steps, to the Sequence 
clipboard.

When you click the Delete Steps button or select Edit»Delete Steps, the 
Sequence Editor deletes the currently selected steps.

When you click the Paste Steps button or select Edit »Paste Steps, the 
Sequence Editor inserts the contents of the Sequence Editor clipboard
the sequence list according to the setting of the Insert switch. When th
Sequence Editor clipboard is empty, the Paste Steps button is disabled, and 
the Edit»Paste Steps menu item is dimmed.

When you click the Undo Step Edits button or select Edit»Undo Step 
Edits, the Sequence Editor reverses the last edit action. If you have no
made any changes or have just reversed an action, the Undo Step Edits 
button is disabled, and the Edit»Undo Step Edits menu item is dimmed.

Note For a list of Element Editing Control key and menu shortcuts, see the Sequence 
Editor Control Key Assignments and Sequence Editor Menu Shortcuts sections in this 
chapter.
© National Instruments Corporation 4-9 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

low 
 to 

ition 
adio 
el. 

, 
hich 

that 
p.

 

that 
p.

he 
lect 

d 
Using the Editing Elements 
Adding a New Step
The Test Executive allows you to insert a new step either above or be
an existing step in the sequence list. Perform the following operations
add a new step to a sequence.

1. Select the existing step in the sequence list and set the insert pos
to above or below, as desired. The insert position is set using the r
button control in the upper right corner of the Sequence Editor pan

2. Click the New Step button. Notice that clicking this button adds a new
untitled step to the sequence list and selects the Name control, w
allows you to name the new step.

3. Enter or select the desired values in the step editor controls. Notice
the Test Executive automatically applies the new values to the ste

Modifying a Step
Perform the following operations to modify a step.

1. Click the step you want to edit in the sequence list. Notice that the
settings for the selected step appear in the step editing area.

2. Enter or select the desired values in the step editor controls. Notice
the Test Executive automatically applies the new values to the ste

Copying a Step
To copy a step, perform the following operations.

1. Click the step you want to copy in the sequence list.

2. Click the Copy Steps button or select Edit»Copy Steps to copy the 
selected step to the Sequence Editor clipboard.

3. To insert the step above an existing step, select the step and set t
insert position to above. To insert the step below an existing step, se
the step and set the insert position to below. 

4. Click the Paste Steps button or select Edit»Paste Steps. The 
Sequence Editor inserts the contents of the clipboard in the desire
location in the sequence list.

Deleting a Step
To delete a step, perform the following operations.

1. Click the step you want to delete in the sequence list.

2. Click the Delete Steps button or select Edit»Delete Steps.
LabVIEW Test Executive Reference Manual 4-10 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

This 
veral 
.

d or 
e first 

 the 

these 

 
e. 
den.

e. The 
y to 

 
ts, 

For 
et or 
Mass Editing
The Sequence Editor allows you to edit more than one step at a time. 
feature is useful when you need to make the same modifications to se
steps. To mass edit a group of steps, perform the following operations

1. Select the steps you want to edit by <Shift>-clicking them in the 
sequence list.

Note To add or remove steps from the current selection, <Shift>-click the step. To ad
remove a group of adjacent steps to the selection, hold down the <Shift> key, click th
step in the group, and drag the mouse pointer to the last step in the group.

2. Enter or select the desired values in the step editor controls. The 
Sequence Editor automatically applies the changes to every step in
selection.

3. To exit mass edit mode, select a single step in the sequence list.

Step Editor Controls
This section describes the step editor controls and indicators. You use 
controls, such as Select Resource and the Set Limit Specification, to 
modify the definition of any step in the sequence.

Type
Use the Type ring control to choose the type of the selected step. The
available step types are LabVIEW Test, C Test, GOTO, and Sequenc
Depending on the type selected, other editor controls are shown or hid

Name (LabVIEW Test, C Test, Sequence)
Type an ASCII string in the Name control. The name appears in the 
Sequence Display of the main Test Executive front panel when the 
sequence is loaded. Each step in a sequence must have a unique nam
Sequence Editor warns you if a step is not properly named when you tr
quit the editor.

Resource (LabVIEW Test, C Test, Sequence)
The Resource indicator contains the path to the resource that the step
executes. For LabVIEW tests, the resource is a valid test VI. For C tes
the resource is a DLL or shared library containing a valid test function. 
Sequence steps, the resource is a Test Executive sequence file. To s
change the resource, click the Select Resource… button. From the dialog 
© National Instruments Corporation 4-11 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

er 
he 

t 

e 
ectly 

ype 
box that appears, select a valid resource file from the file system (eith
local or network). The path to the resource file you select appears in t
Resource indicator.

Function (C Test)
Type the name of the function found with the DLL or shared library 
specified in the Resource indicator. This function must be a valid C tes
function.

Limit Specification (LabVIEW Test, C Test)
The Limit Specification indicator specifies the type of limit checking th
Test Executive uses to determine if a step passes. You cannot type dir
into the Limit Specification indicator. To specify a limit, click the Set 
Limit Specification… button next to the indicator. Then use the ring 
control to set the comparison type and the string controls to set the 
measurement.

The Comparison Type ring control specifies the type of comparison to 
perform, if any, to determine if a step passed. Select the desired limit t
from the Comparison Type ring control. Table 4-5 lists the meaning of 
each value of Comparison Type.

Table 4-5.  Comparison Type Values

 Type Condition for Test to Pass

EQ (==) Numeric Measurement = Lower Limit

NE (!=) Numeric Measurement != Lower Limit

GT (>) Numeric Measurement > Lower Limit

LT (<) Numeric Measurement < Lower Limit

GE (>=) Numeric Measurement >= Lower Limit

LE (<=) Numeric Measurement <= Lower Limit

GTLT (> && <) Numeric Measurement > Lower Limit and < Upper Limit

GTLE (> && <=) Numeric Measurement > Lower Limit and <= Upper Limit

GELT (>= && <) Numeric Measurement >= Lower Limit and < Upper Limit

GELE (>= && =<) Numeric Measurement >= Lower Limit and <= Upper Limit

Boolean PASS/FAIL Flag = TRUE
LabVIEW Test Executive Reference Manual 4-12 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

it 
it 

 

ent 

 

ng 

the 
s 
tive 
tive 
Depending on the setting of Comparison Type, zero, one-limit, or two-lim
entry controls appear in the Set Limit Specification dialog box. A one-lim
value appears for Comparison Types of EQ (==) , NE (!=) , GT (>) , 
LT (<) , GE (>=) , or LE (<=) . Two-limit values, a lower and upper limit,
appear for Comparison Types of GTLT (> && <) , GELE (>= && <) , 
GELT (>= && <) , or GTLE (> && <=) .

When the Comparison Type is String , the string limit control appears. 
The Test Executive compares the string value with the string measurem
that the step calculates. There are no limits for Comparison Types of 
Boolean , Log  only , or None. 

For numeric comparisons, use the Format control to view the numeric
limits in fractional, scientific, decimal, hexadecimal, octal, or binary 
format. For string comparisons, use the Display control to view the stri
limit in normal, hex, or ‘\’ codes mode.

Load Specification (LabVIEW Test, C Test, 
Sequence)
Load Specification determines whether the step resource loads when 
sequence loads (pre-load) or loads upon demand when the step execute
(dynamic-load). Pre-load steps run much faster because the Test Execu
does not need to load them during the test sequence. The Test Execu
loads dynamic-load steps just before running them and unloads them 
immediately after running them. 

String String Measurement = String Limit

Log only No PASS/FAIL determination–measurement is logged

None No PASS/FAIL determination or data logging

Table 4-5.  Comparison Type Values (Continued)

 Type Condition for Test to Pass
© National Instruments Corporation 4-13 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

 for 

he 

ns 
 

ass 
. If 
ta. If 
Run Mode (LabVIEW Test, C Test, Sequence)
Run Mode specifies how the step executes. Table 4-6 lists the options
Run Mode and their meanings.

FAIL Action (LabVIEW Test, C Test, Sequence)
FAIL Action specifies an action to take if the step fails. Table 4-7 lists t
options for FAIL Action and their meanings.

Max Loop Count
The Max Loop Count control appears only when FAIL Action is set to 
Loop . Max Loop Count specifies the maximum number of loop iteratio
to perform when the FAIL Action is set to Loop , and the step fails. Setting
the loop count to -1  causes the step to loop until the operator clicks on 
either the Abort Loop  or Abort  button, or the step passes.

Input Buffer? (LabVIEW Test, C Test)
The Input Buffer? control specifies whether the Test Executive should p
a buffer of input data to the test VI or function when it executes the step
you clear this checkbox, the Test Executive does not pass any input da

Table 4-6.  Run Mode Options

Run Mode Meaning

Normal Execute step normally.

Skip Do not execute the step; set result to SKIP.

Force PASS Do not execute the step; set result to PASS.

Force FAIL Do not execute the step; set result to FAIL .

Table 4-7.  FAIL Action Options

FAIL Action Meaning

Continue Continue execution with next step.

Stop Stop execution of sequence.

Callback Call the Test Failure sequence callback VI 
to determine whether to continue, stop, or 
retry the step.

Loop Repeat execution of the step.
LabVIEW Test Executive Reference Manual 4-14 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

s 
ust 
st 

ffer? 

 

ses 
 

n. 

 
he 

test 
nel 

st 
not 
s an 

 VI 

ep. 
you check this box, the Input Buffer string control appears, which allow
you to enter the input data. To pass input data to a test VI, the test VI m
have an Input Buffer string control on its front panel. Otherwise, the Te
Executive cannot execute the step. For more details about the Input Bu
control, see the Test Executive Typedef Controls section in Chapter 5, 
Modifying the Test Executive. No additional operations are necessary to
pass input data to a C test function.

Invocation Info? (LabVIEW Test)
The Invocation Info? control specifies whether the Test Executive pas
run-time call information to the test VI when it executes the step. If you
clear this checkbox, the Test Executive does not pass run-time call 
information to the test VI. If you check this box, the Invocation Info? 
control appears, which allows you to enter the run-time call informatio
To pass invocation information to a test VI, the test VI must have an 
Invocation Information cluster control on its front panel. Otherwise, the
Test Executive cannot execute the step. For more information about t
Invocation Info? control, see the Test Executive Typedef Controls section 
in Chapter 5, Modifying the Test Executive.

Show Test VI Panel at Runtime? (LabVIEW Test)
The Show Test VI Panel at Runtime? control determines whether the 
VI shows its panel at run time. If you select this checkbox, the test VI pa
shows at run time. Otherwise, the test VI panel remains closed.

Edit Test VI (LabVIEW Test)
The Edit Test VI  button is linked to a callback VI. The default Open Te
VI callback opens the test VI panel for the current step. If the test VI is 
defined or is invalid, the callback VI cannot open the panel and display
error message. You use the Edit Test VI  button to edit test VIs from within 
the Sequence Editor. Modifying or replacing the Open Test VI callback
makes the Edit Test VI  button perform different functions. For more 
details, see the Advanced Modifications section in Chapter 5, Modifying the 
Test Executive.

Edit Dependencies
The Edit Dependencies… button invokes the Dependency Editor, 
allowing you to examine or modify the dependencies for the current st
For more details, see the Editing Dependencies section of this chapter.
© National Instruments Corporation 4-15 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

r 
f you 
x 

tive 
ithin 

TO 

ual 

ep to 
ou 

f the 
n to 

l step 
ses 
 

Edit Step Comment (LabVIEW Test, C Test, GOTO, 
Sequence)
With the Edit Step Comment… button, you can edit the comment field fo
the step. The Sequence Report callback VI can access this comment. I
click the Edit Step Comment… button, the Edit Step Comment dialog bo
appears.

GOTO Target (GOTO)
Enter the name of a step in the GOTO Target control. If the Test Execu
executes this step, sequence execution skips to the GOTO Target. W
the Test Executive, step names are case-sensitive.

GOTO Conditions (GOTO)
The GOTO Conditions… button invokes the Dependency Editor, 
allowing you to examine or modify the dependencies for the current GO
step. For more information, see the Editing Dependencies section later in 
this chapter.

Sequence Options
To view or set the Sequence Options, select Sequence»Sequence 
Options…. 

Sequence Load Specification
You use the Sequence Load Specification control to override the individ
load settings for every step in the sequence. The default setting is Use each  
step’s  load  specification , which means that when the Test 
Executive loads the sequence, it uses the load specification of each st
determine whether to pre-load or dynamically load step resources. If y
set the Sequence Load Specification to Pre-load all  steps , the Test 
Executive pre-loads every step resource in the sequence regardless o
load specification of the step. If you set the Sequence Load Specificatio
Dynamic-load  all  steps , the Test Executive dynamically calls each 
step resource, regardless of the load specification of the step. When al
resources are pre-loaded, the Test Executive runs faster, but it also u
more memory. When step resources are dynamically loaded, the Test
Executive runs more slowly but uses less memory.
LabVIEW Test Executive Reference Manual 4-16 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

ecify 
s, and 
 
 Path 

 the 

est 

, 

 of 

the 
nce 

the 
Sequence Path Specification
To make moving sequence files between computers easier, you can sp
how the Test Executive resolves paths to step resources, sequence VI
the test report file specified in a sequence file. Through the Sequence
Options dialog box in the Sequence Editor, you can set the Sequence
Specification to Absolute , Relative to sequence file , or 
Relative to Test Executive default .

With a Sequence Path Specification of Absolute , the Test Executive 
expects to find step resources, sequence VIs, and the test report file in
exact location where they were when you saved the sequence file.

For a Sequence Path Specification of Relative to sequence file , the 
Test Executive expects to find test resources, sequence VIs, and the t
report file in positions relative to the location of the sequence file.

When the Sequence Path Specification is set to Relative to Test 

Executive default , the Test Executive expects to find test resources
sequence VIs, and the step report file in positions relative to the path 
specified in the DefaultResourceFilePath  preference in the 
testexec.ini  file. For additional information about the testexec.ini  
configuration file, see the System Configuration File, testexec.ini section in 
Chapter 5, Modifying the Test Executive.

Stop on Any Failure
If set, the Stop on Any Failure checkbox stops sequence execution 
immediately after any step fails. This setting overrides the FAIL Action
any individual step.

Description
The Description button allows you to edit the description of the test 
sequence. If you click the Description button, the Edit Description dialog 
box appears. The description you create in this dialog box appears in 
Test Report that the Test Executive generates at the end of test seque
execution.

Enable Test Report Logging
The Test Executive logs the Test Report to the file specified, if any, in 
Test Report File indicator.
© National Instruments Corporation 4-17 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

hen 
ou 
 

est 

st 
to the 

hen, 
g 

ew 

nt 
 the 

rrors 

rrors 
Report File Mode
The Report File Mode control specifies the Test Executive response w
a file already exists with the name in the Test Report File indicator. If y
set Report File Mode to Overwrite , the new report replaces any existing
file contents. If you set Report File Mode to Append , the Test Executive 
appends the new report to the existing file. If the file does not exist, the T
Executive creates a file, regardless of the mode. 

Change Report File
The Change Report File button specifies the pathname for the ASCII Te
Report file generated at the end of test sequence execution. The path 
file you specify appears in the Test Report File indicator.

Sequence VIs
The term sequence VIs refers to the Pre-Run VI, Post-Run VI, and 
sequence callback VIs for a particular sequence.

You use the Select VI control to choose any one of the sequence VIs. T
you change the path for that VI in the VI Path control. Alternately, clickin
the Browse button activates a file dialog box, so you can browse for a n
sequence VI. If you select a new sequence VI and click the OK  button, the 
path to that VI is stored in the VI Path control.

To open the front panel of the current sequence VI, click the Open VI 
button. You can then examine or edit the VI. If the VI Path for the curre
sequence VI is empty or invalid, the Sequence Editor is not able to open
panel and displays an error message.

To clear the current sequence VI, click the Clear VI  button. To save the 
changes that you make in the Sequence Options dialog box, click the OK  
button. To discard the changes, click the Cancel button.

Sequence Errors
When you select Sequence»Sequence Errors…, the Sequence Editor 
checks the test sequence for errors. If the Sequence Editor finds no e
in the sequence, it displays the message No Sequence Errors . If it finds 
errors in the sequence, the Sequence Editor displays the Sequence E
dialog box.

The Sequence Errors dialog box lists steps that have errors in the Bad Steps 
list box. When you select a step from the Bad Steps list box, the errors for 
the selected step appear in the Step Problems list box. If you select an error 
LabVIEW Test Executive Reference Manual 4-18 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

rs 

e 
rs 
ep. 
uence 
ests 
 lists 

age 

to 
 
ges 
in the Step Problems list box, an explanation of the selected error appea
in the Details list box.

For some errors, the Sequence Errors dialog box displays a Correctiv
Action. For example, if a step has an empty name, the Sequence Erro
dialog box displays a Corrective Action of changing the name of the st
However, if the error is that the step does not have a resource, the Seq
Errors dialog box does not display a Corrective Action. Instead, it sugg
that you assign a resource to the step in the Sequence Editor. Table 4-8
the errors that the Sequence Editor detects and the corresponding 
Corrective Actions.

If you enter a Corrective Action, you must click the Apply  button to apply 
the corrective action to the sequence. After you click the Apply  button, the 
Sequence Errors dialog box updates to reflect the application of the 
Corrective Action. When you fix the last error in the sequence, the mess
There are no sequence errors.  appears in the Details list box.

Clicking the OK  button in the Sequence Errors dialog box returns you 
the Sequence Editor and updates any changes you make. Clicking the
Cancel button returns you to the Sequence Editor and discards any chan
you make. 

Table 4-8.  Possible Errors and Corrective Actions in the Sequence Errors Dialog Box

Error Corrective Action 

Step with no name Change selected step name

Step with duplicate name Change selected step name

Step with invalid resource None

Step with invalid limit 
specification

None

GOTO step with invalid target Change GOTO target in selected 
GOTO or all GOTOs

Step with error in dependency None

Step dependent on invalid stepChange step name in selected 
dependency, selected expression, or 
all expressions

Step with invalid dependency 
condition

None
© National Instruments Corporation 4-19 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

 not 
ting 
nce 

ade 

aved 

st 
em. 
x 

 the 

 edit 
s 

r 
File Menu
Selecting File»Save… saves the current sequence. If the sequence has
yet been saved, a dialog box prompts you for a path or filename. Selec
Save As… prompts you for a filename and then saves the current seque
under that name. Selecting Exit  returns you to the main Test Executive 
front panel, prompting you to save if any changes were made. If you m
changes to the sequence or saved it under a different name, the Test 
Executive unloads the old sequence hierarchy and reloads the new, s
hierarchy.

When you select Save… or Save As…, the Sequence Editor scans the te
sequence for errors. If any errors are found, you are prompted to fix th
If you choose to fix the sequence errors, the Sequence Error dialog bo
appears. Selecting Save… or Save As… without fixing sequence errors 
saves a sequence that cannot be executed by the Test Executive until
errors are fixed.

Edit Menu
Use the Cut Steps, Copy Steps, Paste Steps, Delete Steps, and Undo Step 
Edits menu items to edit steps as described in the Step Editing Elements 
section earlier in this chapter.

Use the Cut, Copy, Paste, Clear, and Undo menu items to edit data in 
Sequence Editor controls other than the Steps List. For example, if you
the contents of the Input Buffer string, use the menu items listed in thi
paragraph.

Sequence Editor Control Key Assignments
Use the keyboard shortcuts listed in Table 4-9 for the Sequence Edito
controls.

Table 4-9.  Key Assignments for Sequence Editor Controls

Control Key Assignment

Sequence List <F3>

Insert <F4>

New Step <F5>

Copy Steps <F6>

Cut Steps <F7>
LabVIEW Test Executive Reference Manual 4-20 www.natinst.com



Chapter 4 Creating Tests and Test Sequences
Delete Steps <F8>

Paste Steps <F9>

Undo Step Edits <F10>

Type <Shift-F1>

Name <Shift-F2>

Function <Shift-F3>

Set Limit Specification... <Shift-F4>

Select Resource… <Shift-F5>

Edit Dependencies <Shift-F6>

Edit Step Comment <Shift-F7>

Edit Test VI <Shift-F8>

GOTO Target <Shift-F9>

GOTO Condition <Shift-F10>

Load Specification <Ctrl-F1>

Run Mode <Ctrl-F2> (<command-F2>, 
<meta-F2>, <Alt-F2>)

FAIL Action <Ctrl-F3> (<command-F3>, 
<meta-F3>, <Alt-F3>)

Max Loop Count <Ctrl-F4> (<command-F4>, 
<meta-F4>, <Alt-F4>)

Input buffer? <Ctrl-F5>

Invocation Info? <Ctrl-F6>

Show VI Panel at Runtime? <Ctrl-F7>

Input Buffer <Ctrl-F8>

Table 4-9.  Key Assignments for Sequence Editor Controls (Continued)

Control Key Assignment
© National Instruments Corporation 4-21 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

or 

led a 

ps in 
Sequence Editor Menu Shortcuts
Use the keyboard shortcuts listed in Table 4-10 for the Sequence Edit
menu commands.

Editing Dependencies
Conditional execution of one step based on the result of another is cal
dependency. Use the Dependency Editor dialog box to define 
dependencies for steps.

The Dependency Editor dialog box shows the dependencies for all ste
the sequence. The name of each step appears in the Steps list box in the 
top-left corner of the Dependency Editor dialog box. To see the 

Table 4-10.  Sequence Editor Menu Commands

Menu Item Key Assignment

File»Save <Ctrl-S> (<command-S>, 
<meta-S>, <alt-S>)

Undo Step Edits <Ctrl-Shift-Z> 
(<command-Shift-Z>, 
<meta-Shift-Z>, <alt-shift-Z>)

Cut Steps <Ctrl-Shift-X> 
(<command-Shift-X>, 
<meta-Shift-X>, <alt-shift-X>)

Copy Steps <Ctrl-Shift-C> 
(<command-Shift-C>, 
<meta-Shift-C>, <alt-shift-C>)

Paste Steps <Ctrl-Shift-V> 
(<command-Shift-V>, 
<meta-Shift-V>, <alt-shift-V>)

Undo <Ctrl-Z> (<command-Z>, 
<meta-Z>, <alt-Z>)

Cut <Ctrl-X> (<command-X>, 
<meta-X>, <alt-X>)

Copy <Ctrl-C> (<command-C>, 
<meta-C>, <alt-C>)

Paste <Ctrl-V> (<command-V>, 
<meta-V>, <alt-V>)
LabVIEW Test Executive Reference Manual 4-22 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

ep in 

e 

ome 

cy. 
ly if 

en 

omes 
fore 
. In 
ALSE.

r 

AND 
 Test 
sion 
dependencies for any step in the sequence, select that step in the Steps list 
box. The Dependency Editor then displays the dependencies for that st
the Dependencies list box. At the same time, the Dependency Editor 
updates the New Determinants list box to show the list of steps that can b
added to the dependencies. If you select a GOTO step in the Steps list box, 
the New Determinants list includes every step in the sequence. If you 
select a step, the New Determinants list includes every step in the 
sequence except for that step. A step cannot be dependent on itself. 

Perform the following operations to make a step dependent on the outc
of another step.

1. Select the dependent step in the Steps list box.

2. Select the determinant step in the New Determinants list box and 
click the » button to add it to the Dependencies list box. This adds a 
FAIL dependency for the determinant step to the Dependencies list 
box. Double-clicking the determinant step also adds the dependen
The FAIL dependency means that the dependent step executes on
the determinant step fails. 

3. To change the dependency to a PASS dependency, click the Change to 
PASS button to the right of the Dependencies list box. 
Double-clicking the FAIL dependency also changes it to a PASS 
dependency.

Notice the Dependency Expression indicator at the bottom of the 
Dependency Editor dialog box. This indicator displays the same 
information as the Dependencies list box but in a different notation. The 
Test Executive uses this notation to store the dependencies for any giv
step.

Tip It is possible to make step A dependent on the outcome of step B even if step B c
after step A in the sequence list. Through the use of GOTOS, step B can execute be
step A. If step B does not execute before step A, the result for step B is UNKNOWN
such a case, any PASS/FAIL dependency that step A has upon step B evaluates to F

AND and OR Expressions
When a step has more than one determinant step, an AND or an OR 
expression must define the relationship between the determinants. Fo
example, suppose Test C is dependent on Tests A and B. If Test C is 
dependent upon Test A passing and Test B failing, then Test C has an 
dependency expression on Tests A and B. If Test C is dependent upon
A passing or Test B failing, then Test C has an OR dependency expres
on Tests A and B.
© National Instruments Corporation 4-23 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

ion 

ction.

ach 

eral 
 
You 
TO 
 

 OR 
uld 
 

ns.

ct 

ncy.

R 

e 
Perform the following operations to add an AND dependency express
for a step.

1. Select the desired dependent step in the Steps list box.

2. Click the Insert AND button to the right of the Dependencies list box 
to add a new, empty AND expression. Click the BEGIN AND statement 
and set the Insert switch to below.

3. Add the desired determinant steps as described in the previous se

When the Test Executive evaluates the AND expression, it evaluates e
element between the BEGIN AND and END AND statements. The AND 
expression only evaluates TRUE if every element inside it is TRUE.

OR expressions are similar to AND expressions in that they contain sev
elements within a BEGIN OR and an END OR statement. An OR expression,
however, evaluates TRUE if any one of the elements inside it is TRUE. 
can add a new OR expression to the dependencies for any step or GO
statement by clicking the Insert OR button. You add determinant steps to
the OR expression in the same way that you add them to an AND 
expression.

You can change any AND expression to an OR expression, or an OR 
expression to an AND expression, by selecting the BEGIN or END statement 
of the expression and clicking the Change to PASS button. You can also 
change an expression by double-clicking its BEGIN or END statement.

Complex Dependencies
You can create complex dependency expressions by nesting AND and
expressions inside each other. For example, suppose that Test D sho
execute only if Test A passes or if Tests B and C fail. To define such a
dependency in the Dependency Editor, perform the following operatio

1. Select Test  D in the Steps list box.

2. Click the Insert OR button. After inserting the OR expression, sele
the BEGIN OR statement and set the Insert switch to c.

3. Select Test  A in the New Determinants list box and add it to the 
Dependencies list box. Use the Change to PASS button or 
double-click the FAIL dependency to change it to a PASS depende

4. Click the Insert AND button to nest an AND expression inside the O
expression. After inserting the AND expression, click the BEGIN AND 
statement and set the Insert switch to below.

5. Add FAIL dependencies for Tests B and C by selecting them in th
New Determinants list box and clicking the » button.
LabVIEW Test Executive Reference Manual 4-24 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

nd 

sions 
ns. 

rse 

 
 
erts 

ncies 
Copy, Cut, Delete, Paste, and Undo
The Dependency Editor dialog box features cut, copy, paste, delete, a
undo capabilities. You cut, copy, or delete statements from the 
dependencies of any step by selecting the statements in the Dependencies 
list box and clicking the Copy, Cut, or Delete buttons. You paste 
statements into the dependencies of any other step by clicking the Paste 
button. When the Dependency Editor clipboard is empty, the Paste button 
is disabled.

Note You can copy, cut, or delete individual statements or entire AND and OR expres
in the Dependency Editor. However, you cannot cut, copy, or delete partial expressio
When you select a partial expression, the Copy, Cut, and Delete buttons are disabled.

The Dependency Editor dialog box features one level of undo. You reve
any edit action by pressing the Undo button. When you have not made 
changes or have just reversed an action, the Undo button is disabled.

Dependency Editing Rules
You cannot insert or paste elements outside the top-level dependency
expression in the Dependency Editor. If you attempt to insert or paste
elements outside the top-level expression, the Dependency Editor ins
the elements inside the expression.

OK
The OK  button saves any changes you make to the sequence depende
and returns you to the Sequence Editor. Clicking the OK  button saves only 
to memory. You must select File» Save or File»Save As… in the Sequence 
Editor to save changes to disk.

Cancel
The Cancel button discards any changes made to the sequence 
dependencies and returns you to the Sequence Editor.
© National Instruments Corporation 4-25 LabVIEW Test Executive Reference Manual



Chapter 4 Creating Tests and Test Sequences

ing 

 step 
e to 
 be 

t 
 
han 
Dependency Editor Key Assignments
Table 4-11 lists the Dependency Editor controls and their keyboard 
shortcuts.

Relationship among Dependencies, Run Mode, 
and Test Flow
The dependencies and run mode for each step determine the flow of 
execution for a test sequence. The Test Executive performs the follow
steps to determine whether to execute a given step.

1. The Test Executive evaluates the dependencies for the step. For a
to execute, the dependency expression for that step must evaluat
TRUE. If the Test Executive determines that the current step should
skipped, the step result is set to SKIP.

2. If the dependencies indicate that the step should execute, the Tes
Executive evaluates the Run Mode of the step. If the Run Mode is
Normal , the step executes. If Run Mode is set to any value other t

Table 4-11.  Dependency Editor Key Assignments 

Control Key Assignment

Sequence Elements <F2>

New Determinants <F3>

» <F4>

Dependencies <F5>

Insert <F6>

Insert OR <Shift-F1>

Insert AND <Shift-F2>

Copy <Shift-F3>

Cut <Shift-F4>

Delete <Shift-F5>

Paste <Shift-F6>

Undo <Shift-F7>

Change to PASS <Shift-F8>
LabVIEW Test Executive Reference Manual 4-26 www.natinst.com



Chapter 4 Creating Tests and Test Sequences

sh 
and 
Normal , the step does not execute. Table 4-12 shows the 
corresponding step results for each Run Mode value.

When evaluating dependencies, the Test Executive does not distingui
between a real PASS/FAIL result—where the step actually executed—
a forced PASS/FAIL result.

Table 4-12.  Run Mode Step Result Values

Run Mode Test Result

Skip SKIP

Normal PASS/FAIL

Force PASS PASS

Force FAIL FAIL
© National Instruments Corporation 4-27 LabVIEW Test Executive Reference Manual



© National Instruments Corporation 5-1 LabVIEW Test Executive 
5

lains 

 

e VI, 

 
, 
 

on, 

ack 
Modifying the Test Executive

This chapter describes the architecture of the Test Executive and exp
how to make modifications to it. If you do not plan to modify the Test 
Executive, you can skip this chapter. The chapter covers the following
topics:

• System configuration file, testexec.ini

• Operator interface VI

• Callback VIs

• Test Executive typedef controls

• Common modifications

• Advanced modifications

System Configuration File, testexec.ini
The system configuration file, testexec.ini , is an ASCII file that 
defines the names and locations of the Test Executive operator interfac
callback VIs, and preference values. The testexec.ini  file is located in 
the Test Executive installation directory. The Test Executive creates a
default configuration file with paths to the default operator interface VI
default callback VIs, and initial preference values if one does not exist
when it starts running.

The system configuration file is divided into three sections. The first 
section, [Callback Paths] , identifies the locations of all default 
callback VIs. The second section, [Operator Interface Path] , 
identifies the location of the default operator interface VI. The third secti
[Preferences] , lists the preference values that the Test Executive uses.

[Callback Paths] Section
Each time you launch the Test Executive, it loads the appropriate callb
VIs by reading the [Callback Paths]  section of the testexec.ini  
file. The entries in this section have the following format:

VI_id=”VI_path”
Reference Manual



Chapter 5 Modifying the Test Executive

tive, 

 not 

 

VI_id  specifies a Test Executive callback VI. The system configuration 
file must have an entry for each of the following VI_id  string values:

• Login

• Select_Sequence

• Open_Sequence

• Save_Sequence

• Close_Sequence

• Exit

• Sequence_Report

• Default_PreUUT_Loop

• Default_PreUUT

• Default_PostUUT_Loop

• Default_PostUUT

• Default_PreStep

• Default_PostStep

• Default_Test_Report

• Default_Post_Run-Loop_Test

• Default_Test_Failure

• Default_Edit_Test_VI

VI_path  specifies the absolute file path to the callback VI in a platform 
independent format. You must enclose VI_path  in double quotes and 
make sure that it contains no extra leading or trailing spaces. The following 
code shows a sample entry in testexec.ini  for the Login callback VI:

Login=”/C/LV51/LVEXEC511/CALLBACK.LLB/Login 

Callback.vi”

Patching Callback Paths
As described in the previous section, when you launch the Test Execu
it loads the appropriate callback VIs by reading the paths from the 
testexec.ini  file. If the path to a particular callback VI is invalid, the 
Test Executive prompts you to find the callback VI. This happens, for 
example, if you deploy the Test Executive to a different machine and do
update the callback paths in the system configuration file. 

After you locate the missing callback VI, the Test Executive patches the 
invalid callback VI path with the new path. Then, it prompts you to add the
LabVIEW Test Executive Reference Manual 5-2 www.natinst.com



Chapter 5 Modifying the Test Executive

 

tor 

at 
 

s in 

 

t 
selected VI library or directory to the search path. If you click the Yes 
button, the Test Executive automatically searches that VI library or 
directory to patch the missing paths for any other callback VIs. This search
path is a temporary path that is deleted after you launch the Test Executive.

Note When the Test Executive patches a callback VI path, it marks the path as modified. 
If you try to close the Test Executive with patched callback VI paths, the Test Executive 
prompts you to save changes to testexec.ini . If you click the Yes button, the Test 
Executive saves the patched callback VI paths to testexec.ini . The next time you 
launch the Test Executive, it does not need to search for the callback VIs. 

[Operator Interface Path] Section
When you launch the Test Executive Development System from the 
LabVIEW Project menu, the Test Executive loads the appropriate opera
interface VI by first reading the [Operator Interface Path]  section 
of the testexec.ini  file. The entries in this section have the same form
as those in the [Callback Paths]  section. The system configuration file
must have an entry for the following VI_id  string value:

Operator_Interface

[Preferences] Section
The [Preferences]  section of the testexec.ini  file holds additional 
information the Test Executive uses to define certain values. The entrie
this section have the following format:

preference_name=value

preference_name  specifies the particular preference. 

The first preference the default testexec.ini  file specifies is 
TestNameDisplayLength , which is set to a default value of 21. The 
TestNameDisplayLength  preference specifies how long the step names
shown in the Test Executive Sequence Display can be before they are 
truncated. If you would like to display longer step names, increase the value 
of this preference in testexec.ini  and expand the Sequence Display lis
box to accommodate the longer names.

The second preference the default testexec.ini  file specifies is 
DefaultResourceFilePath , which has a default value of your Test 
Executive installation directory. When the Sequence Path Specification is 
set to Relative to Test Executive default , the Test Executive uses 
the value of this preference as the Test Executive default directory.
© National Instruments Corporation 5-3 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

 
m to 

ion 
ser. 

ed 

py 

face 

 

 

 

lect 
Operator Interface VI
The operator interface VI is the main panel of the Test Executive. It is
responsible for accepting commands from the operator and passing the
the Test Executive engine. It also is responsible for receiving informat
from the Test Executive engine and displaying that information to the u

The Test Executive package includes a default operator interface VI, call
Test Executive.  It is installed in the OPERATOR.LLB VI Library in the 
Test Executive installation directory. The Test Executive also allows you to 
customize the name, appearance, and/or behavior of the default operator 
interface VI.

Modifying the Default VI
Before you modify the default operator interface VI, make a backup co
of it.

Front Panel
You can open and examine the front panel of the default operator inter
VI by performing the following steps.

1. Launch LabVIEW.

2. Select File»Open from the menu on the front panel and choose the
Test Executive VI in the OPERATOR.LLB VI Library in the Test 
Executive installation directory. A Login dialog box appears because
the default operator interface VI is configured to run when opened. 

3. Log in as a developer and quit the Test Executive.

In addition to the visible controls and indicators, the front panel also 
contains some transparent string indicators. Dashed outlines mark the
locations of the transparent string indicators. 

You can make cosmetic modifications to the operator interface VI front 
panel, such as resizing buttons, changing function key assignments, or 
pasting in a logo or other imported graphics, without editing the block 
diagram. However, to add new controls to the panel or change the behavior 
of existing controls, you must edit the block diagram.

Block Diagram
To open and examine the block diagram of the operator interface VI, se
Windows»Show Diagram from the menu on the front panel.
LabVIEW Test Executive Reference Manual 5-4 www.natinst.com



Chapter 5 Modifying the Test Executive

 and 
 

ck 

truct 

or 
se in 

 
nges 
.

ild 

dler 
Notice that the operator interface diagram consists of a command loop
a clock loop. When you run the operator interface VI, it simultaneously
runs the command loop and the clock loop until you quit the Test Executive. 
Notice also that the operator interface VI communicates with the Test 
Executive engine through subVI calls. The Test Executive allows you to 
open the front panel of any of these subVIs, but you cannot modify them or 
look at the block diagrams. The engine subVIs are shipped without blo
diagrams.

Command Loop
The command loop of the operator interface VI is a state machine cons
described in the Spring 1996 issue of the LabVIEW Technical Resource. 
Refer to the About this Manual chapter, of this manual, for LabVIEW 
Technical Resource Spring 1996 issue ordering information. It 
continuously scans all active controls on the operator interface panel f
changes in state. When a control changes state, the corresponding ca
the command loop executes.

If you add a new control to the front panel of the operator interface, you
must edit the command loop so that it monitors and handles state cha
in the new control. Perform the following steps to edit the command loop

1. At the left side of the command loop diagram and in the No Event Case 
structure, turn the state change of your new control into a Boolean 
value—TRUE if the state has changed and FALSE if it has not. The 
default command loop contains examples of Boolean controls and 
numeric controls.

2. In the No Event Case structure, add an input to the bottom of the Bu
Array function and wire the state change value into the new input.

3. On the front panel of the operator interface, add an item to the Event 
List enumerated type representing your new event. Always add new 
events immediately before the Update Display event. Set the Event List 
back to No Event after adding the new event.

4. Add a case before the Update Display case in the Command Han
case structure and place the code to handle your new command in the 
new case.

Note If you create a new subVI and call it from your operator interface block diagram, 
store the new subVI in OPERATOR.LLB, so the operator interface VI finds the subVI when 
it is loaded. 
© National Instruments Corporation 5-5 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

t of 

 
 

e 

he 

mpts 

 

Callback VIs
When you install the Test Executive, the installer places a complete se
default callback VIs in the CALLBACK.LLB VI Library in the Test 
Executive installation directory. In addition, it installs a set of typedef 
controls for creating your own callback VIs in the LabVIEW USER.LIB  
directory. 

By creating your own callback VIs, you customize certain operations in 
the Test Executive, such as user login, prompting for UUT information, 
displaying PASS/FAIL banners, logging UUT Test results, and generating
Test and Sequence reports. The Test Executive engine then handles these
operations by calling your callback VIs. 

The callback VIs for different operations have different calling interfaces. 
The calling interface specifies a set of required inputs and outputs for th
front panel of the callback VI. For the Test Executive to successfully call 
acallback VI, the callback VI must have all required inputs and outputs, 
and the inputs and outputs must be wired to the correct terminals on t
connector pane of the VI. Refer to the example callback VIs for the 
required connector pane configuration for each callback VI.

Note If the Test Executive calls a callback VI that does not have the correct connector 
pane configuration, it attempts to assign the correct connector pane to the VI and pro
you to save the VI with the new connector pane.

You use the typedef controls for the correct definitions for some of the 
required callback inputs and outputs. These controls are available from the 
Controls palette after you install the Test Executive development system. 
For a detailed examination of these typedef controls, see the Test Executive 
Typedef Controls section later in this chapter.

Test Executive Callback VI Calling Interface
The Test Executive calling interface includes system callback VIs and
sequence callback VIs.

System Callbacks
The Test Executive includes the following system callback VIs:

• Login

• Select Sequence

• Open Sequence
LabVIEW Test Executive Reference Manual 5-6 www.natinst.com



Chapter 5 Modifying the Test Executive

s 

ver 
st 

 a 
. If 
• Close Sequence

• Save Sequence

• Sequence Report

• Exit

The system callback VIs are not associated with the execution of any 
particular sequence. Each time you launch the Test Executive, it loads 
the appropriate system callback VIs by reading the entries in the system 
configuration file, testexec.ini . If the Test Executive cannot find the 
system configuration file, it prompts you to find it. When you quit the Test 
Executive, it unloads the system callback VIs.

The rest of this section contains a detailed description of the calling 
interface for each system callback VI.

Note In the parameter tables that follow, the type of some inputs and outputs is listed a
TYPEDEF- xxx.ctl . This value indicates that the input or output is a Test Executive 
typedef control. For a detailed examination of these typedef controls, see the Test 
Executive Typedef Controls section of this chapter.

Login
The Test Executive calls the Login callback VI upon startup and whene
the user clickes the Login button on the operator interface panel. The Te
Executive installs the default Login  Callback .vi  in the CALLBACK.LLB 
VI library in the Test Executive installation directory and uses the 
following calling interface.

The default Login callback VI performs no action with its inputs. It sets
warning in the error out control if the user cancels the Login dialog box
the login is successful, the default callback VI sets error out to no error  
and puts the name, password, and privilege level (Developer, Technician, or 

Type Name Typedef Description

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.

Output New Login 
Info

TYPEDEF-Login Info.ctl Contains login information for 
the new user.
© National Instruments Corporation 5-7 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

ing, 

 
utive 

 

Operator) of the new user into the New Login Info control. If the Login 
callback VI returns an error or warning, the Test Executive does not change 
the current login information and displays the error or warning in the Test 
Display.

You customize the Login callback VI to work with custom login 
information in the following manner. You first create a custom Login Info 
typedef to contain the custom login information. Then, when the login 
callback VI logs in a new user, it fills in the custom Login Info typedef with 
the custom login information, flattens the contents of the typedef to a str
and passes the flattened string out in the User Info output of the New Login 
Info cluster. If any other callback VI needs to access this custom login 
information, it uses the Unflatten From String function on the custom 
Login Info typedef.

Select Sequence
The Test Executive calls the Select Sequence callback VI when the 
operator clicks the Open button on the main operator interface panel to 
open a new test sequence. With the Select Sequence callback VI, the
operator chooses the path to the new test sequence file. The Test Exec
installs the default Select  Sequence  Callback .vi  in the 
CALLBACK.LLB VI library in the Test Executive installation directory and
uses the following calling interface.

Type Name Typedef Description

Input Current 
Sequence Info

TYPEDEF-Sequence.ctl Contains information about the 
test sequence currently shown in 
the Sequence Display.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Output Sequence 
Path

String Contains the path to the selected 
test sequence file.

Output Cancelled? Boolean This output is TRUE if the 
operator cancelled the Select 
Sequence operation, FALSE 
otherwise.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.
LabVIEW Test Executive Reference Manual 5-8 www.natinst.com



Chapter 5 Modifying the Test Executive

 

, 
e 

 

 
 users 

s a 

r or 

box 
The default Select Sequence callback VI opens the standard LabVIEWfile 
dialog box and prompts the operator to choose a sequence file. The default 
callback VI returns the path to the selected file in the Sequence Path 
control, returns TRUE in Cancelled? if the operator cancels the dialog box
and always returns no error  in the error out control. If the Select Sequenc
callback VI returns TRUE in Cancelled?, the Test Executive cancels the 
operation and keeps the currently loaded sequence. If the callback VI
returns an error in the error out control, the Test Executive cancels the 
operation and displays the error in the Test Display. To use a custom Open
Sequence dialog box or to restrict access to sequences based upon the
privilege level, modify the default Select Sequence callback VI.

Open Sequence
The Test Executive calls the Open Sequence callback VI when it open
new sequence. The Test Executive installs the default Open Sequence  
Callback .vi  in the CALLBACK.LLB VI library in the Test Executive 
installation directory and uses the following calling interface.

The default Open Sequence callback VI performs no action. If the 
operation is successful, the default callback VI returns the sequence 
description in the Sequence Info String control and returns no error  in 
the error out control. If the Open Sequence callback VI returns an erro
warning to the Test Executive, the error appears in the Test Display. The 
string returned in Sequence Info String appears in the Sequence Info 

Type Name Typedef Description

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
test sequence that was opened.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Output Sequence Info 
String

String Contains a string that appears in 
the Sequence Info string 
indicator on the operator 
interface panel. This string 
contains a description of the 
sequence or instructions to the 
operator.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.
© National Instruments Corporation 5-9 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

 

.

e 

 
r 

.

.

on the operator interface panel. You can modify this VI to perform 
initialization functions or to log sequence file usage.

Close Sequence
The Test Executive calls the Close Sequence callback VI immediately
before it closes a sequence. The Test Executive installs the default Close  
Sequence  Callback .vi  in the CALLBACK.LLB VI library in the Test 
Executive installation directory and uses the following calling interface

The default Close Sequence callback VI performs no action. If the clos
operation is successful, it returns no error  in the error out control. If the 
callback VI returns an error to the Test Executive, the error appears in the
Test Display. You modify this callback VI to perform cleanup functions o
to log sequence file usage.

Save Sequence
The Test Executive calls the Save Sequence callback VI immediately 
after it saves a sequence. The Test Executive installs the default Save 

Sequence  Callback .vi  in the CALLBACK.LLB VI library in the Test 
Executive installation directory and uses the following calling interface

Type Name Typedef Description

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
test sequence that is being closed

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.

Type Name Typedef Description

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
test sequence that was saved.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.
LabVIEW Test Executive Reference Manual 5-10 www.natinst.com



Chapter 5 Modifying the Test Executive

 

lick 

 

nce 

s it 
ult 
The default Save Sequence callback VI performs no action. If the save 
operation is successful, it returns no error  in the error out control. If the 
callback VI returns an error to the Test Executive, the error appears in the
Test Display. You modify this callback VI to log sequence file 
modifications.

Sequence Report
The Test Executive calls the Sequence Report callback VI when you c
the Sequence Report button on the operator interface panel. The Test 
Executive installs the default Sequence  Report  Callback .vi  in the 
CALLBACK.LLB VI library in the Test Executive installation directory and
uses the following calling interface.

The default Sequence Report callback VI generates an ASCII, 
spreadsheet-style report of the contents of the currently loaded seque
and prompts you to save the report to disk. You modify this callback VI to 
customize the contents of the Sequence Report ASCII file to meet your 
needs.

Exit
The Test Executive calls the Exit callback VI when you quit the Test 
Executive. If there is an open test sequence, the Test Executive close
before calling the Exit callback VI. The Test Executive installs the defa
Exit  Callback .vi  in the CALLBACK.LLB VI library in the Test Executive 
installation directory and uses the following calling interface.

You modify the Exit callback VI to work with the Login callback VI to log 
usage of the Test Executive.

Type Name Typedef Description

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
test sequence currently shown in 
the Sequence Display.

Type Name Typedef Description

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.
© National Instruments Corporation 5-11 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

e 

 

ence. 

 

 

Sequence Callbacks
The Test Executive includes the following sequence callback VIs:

• Pre-UUT Loop

• Pre-UUT

• Post-UUT

• Post-UUT Loop

• Pre-Step

• Post-Step

• Test Report

• Post Run-Loop Test

• Test Failure

• Open Test VI

Each time you launch the Test Executive, it loads the appropriate sequenc
callback VIs by first reading the entries in the system configuration file, 
testexec .ini . If the Test Executive cannot find the system configuration 
file, it prompts you to find it. When you quit the Test Executive, it unloads 
the sequence callback VIs.

Although the Test Executive contains a default set of sequence 
callback VIs, each sequence has its own custom set of sequence callback
VIs. If a sequence uses a custom callback VI, the Test Executive loads the 
VI when it opens the sequence and unloads it when it closes the sequ
While the sequence is open, the custom callback VIs override the 
corresponding default callback VIs. You specify custom callback VIs for a
sequence by selecting Sequence Options… in the Sequence Editor. For 
more information, see Chapter 4, Creating Tests and Test Sequences.

When you create custom callback VIs that individual sequences specify, do 
not use names that are the same as the default callback VIs specified in your 
testexec.ini  file.

The Test Executive calls the first seven sequence callback VIs—Pre-UUT
Loop, Pre-UUT, Post-UUT, Post-UUT Loop, Pre-Step, Post-Step, and Test 
Report—during the execution of a test sequence. Figure5-1 shows how the 
Test Executive calls these callback VIs during a UUT Test loop.
LabVIEW Test Executive Reference Manual 5-12 www.natinst.com



Chapter 5 Modifying the Test Executive

T 

 

d 

 

l 
Figure 5-1.  Flow of Sequence Callback VIs in a UUT Test Loop

The sequence callback VIs handle operations such as putting up a UU
Information dialog box at the start of a UUT Test, putting up a PASS/FAIL 
banner at the end of a UUT Test, and generating an ASCII Test Report at 
the end of a UUT Test Loop. By modifying these default sequence 
callback VIs or by specifying custom sequence callback VIs, you create
customized UUT Information dialog boxes, customized PASS/FAIL 
banners, or customized Test Reports.

When a step with a FAIL Action of Callback  fails, the Test Executive 
engine calls the Test Failure callback VI to determine what action it shoul
take. After the user clicks the Run Step(s) or Loop Step(s) button to run or 
loop an individual step, the Test Executive engine calls the Post Run-Loop
Test callback VI and passes the step results to it.

The Sequence Editor calls the last sequence callback VI, Open Test VI, 
when you click the Edit Test VI  button or double-click a LabVIEW test in 
the sequence list. The default Open Test VI callback opens the front pane
of the selected LabVIEW test, so you can edit it. You replace this default 
callback VI with one that automatically configures the call to the test VI or 
performs other LabVIEW test editing operations.

The rest of this section contains a detailed description of the calling 
interface for each sequence callback VI.

Pre-UUT Loop
Callback

Pre-UUT
Callback

Post-UUT
Callback

Post-UUT
Loop Callback

Test Report
Callback

Pre 
Run S1 S2 Sn*

Post
Run...

BEGIN
if no error

if error

Test Sequence

if continue

if stop or error if stop or error

if continue

END

* Where Sn is

Pre-Step
Callback Stepn Post-Step

Callback
© National Instruments Corporation 5-13 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

s 

the 
 

 
s 

e 
te 

g 
Note In the parameter tables that follow, the type of some inputs and outputs is listed a
TYPEDEF- xxx.ctl . This value indicates that the input or output is a Test Executive 
typedef control. For a detailed examination of these typedef controls, see the Test 
Executive Typedef Controls section of this chapter.

Pre-UUT Loop
The Test Executive calls the Pre-UUT Loop callback VI before it tests 
first UUT in a UUT Test Loop. You initiate a UUT Test Loop by clicking
the Test UUT button. The Test Executive installs the default Pre-UUT  
Loop  Callback .vi  in the CALLBACK.LLB VI library in the Test Executive 
installation directory and uses the following calling interface.

The default Pre-UUT Loop callback VI performs no action and returns
no error  in the error out control. If the Pre-UUT Loop callback VI return
an error to the Test Executive, it terminates the UUT Test Loop and 
displays the error in the Test Display. You modify this callback VI to 
perform appropriate initialization before a UUT Test Loop begins. 

Pre-UUT
The Test Executive calls the Pre-UUT callback VI just before calling th
PreRun VI at the beginning of each cycle of a UUT Test Loop. You initia
a UUT Test Loop by clicking the Test UUT button. The Test Executive 
installs the default Pre-UUT  Callback .vi  in the CALLBACK.LLB VI 
library in the Test Executive installation directory and uses the followin
calling interface.

Type Name Typedef Description

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
top-level test sequence in the 
hierarchy being executed.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI. 
LabVIEW Test Executive Reference Manual 5-14 www.natinst.com



Chapter 5 Modifying the Test Executive

you 
I 

e 

 

The default Pre-UUT callback VI displays a UUT Info dialog box that 
prompts you to enter a serial number for the UUT about to be tested. If 
click the Stop button on the default UUT Info dialog box, the callback V
sets the Continue? Boolean to FALSE and returns no error  in the error 
out control. Otherwise, the callback VI copies the serial number into th
UUT Info control, sets Continue? to TRUE, and returns no error  in the 
error out control. The Test Executive ends the UUT Test Loop if the 
Pre-UUT callback VI returns FALSE in the Continue? control. If the 
callback VI returns an error to the Test Executive, it terminates the 
UUT Test Loop and displays the error in the Test Display.

Similar to defining custom login information in the Login callback VI, you
also can define custom UUT information in the Pre-UUT callback VI. For 
more information, see the Login section earlier in this chapter.

Type Name Typedef Description

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
top-level sequence in the 
hierarchy being executed.

Input Previous UUT 
Info

String Contains the UUT information 
for the last UUT that was tested. 
This input is empty for the first 
UUT in a UUT Test loop.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Input UUT# Numeric (I32) Indicates how many UUTs have 
been tested in the current UUT 
Test Loop.

Output Continue? Boolean Indicates whether to continue the 
UUT Test Loop.

Output UUT Info String Contains user-supplied 
information about the next UUT 
to be tested.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.
© National Instruments Corporation 5-15 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

 
a 

g 

 a 

 

Post-UUT
The Test Executive calls the Post-UUT callback VI just after calling the
PostRun VI at the end of each cycle of a UUT Test Loop. You initiate 
UUT Test Loop by clicking the Test UUT button. The Test Executive 
installs the default Post-UUT  Callback .vi  in the CALLBACK.LLB VI 
library in the Test Executive installation directory and uses the followin
calling interface. 

If UUT testing is successful, the default Post-UUT callback VI displays
PASS banner if all the steps in the sequence passed or a FAIL banner if any 
step in the sequence failed and its Step Fail = Seq. Fail?  flag was 
set to TRUE. If you abort testing for the UUT, the default Post-UUT 
callback VI displays an ABORT banner. The default Post-UUT callback VI 
always returns TRUE in the Continue? control. If the Post-UUT callback 
VI returns FALSE in the Continue? control, the Test Executive ends the 
UUT Test Loop, just as it does when the Pre-UUT callback VI returns 
FALSE in Continue? If the Post-UUT callback VI returns an error in the
error out control, the Test Executive terminates the UUT Test Loop and 
displays the error in the Test Display.

Type Name Typedef Description

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
top-level sequence in the 
hierarchy being executed.

Input UUT Results TYPEDEF-UUT Results.ctl Contains user-supplied UUT 
information and raw UUT test 
results.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Input UUT# Numeric (I32) Indicates how many UUTs have 
been tested in the current UUT 
Test Loop.

Output Continue? Boolean Indicates whether to continue the 
UUT Test Loop.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.
LabVIEW Test Executive Reference Manual 5-16 www.natinst.com



Chapter 5 Modifying the Test Executive

ch 

e 

T 

d after 
You can modify the Post-UUT callback VI to perform custom actions, su
as logging result data on a per-UUT basis to a file or a database.

Post-UUT Loop
The Test Executive calls the Post-UUT Loop callback VI when you 
terminate a UUT Test Loop. You initiate a UUT Test Loop by clicking th
Test UUT button. The Test Executive installs the default Post-UUT  Loop  
Callback .vi  in the CALLBACK.LLB VI library in the Test Executive 
installation directory and uses the following calling interface.

The default Post-UUT Loop callback VI performs no action and returns no 
error  in the error out control. If the callback VI returns an error to the Test 
Executive, it displays the error in the Test Display. You modify the 
Post-UUT Loop callback VI to perform appropriate cleanup after a UU
Test Loop ends. 

Pre-Step and Post-Step Callbacks
Pre-Step and Post-Step are sequence callbacks that execute before an
each test step, respectively. The Test Executive installs the default 
Pre-Step Callback.vi  and Post-Step Callback.vi  in the 
CALLBACK.LLB VI library in the Test Executive installation directory.

The Pre-Step Callback uses the following calling interface.

Type Name Typedef Description

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
current test sequence.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.

Type Name Typedef Description

Input Execution 
Mode

TYPEDEF-Execution Mode.ctl Specifies the execution mode 
under which the callback 
isbeing run.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.
© National Instruments Corporation 5-17 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive
The default Pre-Step Callback performs no action and returns no error  in 
the error out control.

The Post-Step Callback uses the following calling interface.

Input Invocation 
Info

TYPEDEF-Invocation 
Info.ctl

Contains the invocation 
information used for the 
associated test step.

Input Runtime 
Status In

TYPEDEF-Runtime Status.ctl Contains runtime information 
like resource path, function name 
(for C functions), and so on for 
the associated test step.

Output Runtime 
Status Out

TYPEDEF-Runtime Status.ctl Contains runtime information 
like resource path, function name 
(for C functions), and so on for 
the associated test step.

Output error out Standard LabVIEW error output 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.

Type Name Typedef Description

Input Execution 
Mode

TYPEDEF-Execution Mode.ctl Specifies the execution mode 
under which the callback 
is being run.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Input Invocation 
Info

TYPEDEF-Invocation 
Info.ctl

Contains the invocation 
information used for the 
associated test step

Input Runtime 
Status In

TYPEDEF-Runtime Status.ctl Contains runtime information 
like resource path, function name 
(for C functions), and so on for 
the associated test step.

Output Test Result TYPEDEF-Test Result.ctl Contains the result information 
from the associated test step.

Type Name Typedef Description
LabVIEW Test Executive Reference Manual 5-18 www.natinst.com



Chapter 5 Modifying the Test Executive

 a 
 
 by 

.

The default Post-Step Callback performs no action and returns 
no error  in the error out control.

Test Report
The Test Executive calls the Test Report callback VI after calling the 
Post-UUT Loop callback VI at the end of a UUT Test Loop. You initiate
UUT Test Loop by clicking the Test UUT button. The Test Executive also
calls this callback VI at the end of a Single Pass Test, which you initiate
clicking the Single Pass button. The Test Executive installs the default 
Test  Report  Callback .vi  in the CALLBACK.LLB VI library in the Test 
Executive installation directory and uses the following calling interface

Output Runtime 
Status Out

TYPEDEF-Runtime Status.ctl Contains runtime information 
like resource path, function name 
(for C functions), and so on for 
the associated test step.

Output error out Standard LabVIEW error output 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.

Type Name Typedef Description

Input Sequence 
Array

Array of TYPEDEF— 

Sequence.ctl

Contains information about the 
currently loaded test sequences.

Input Top-Level 
Sequence 
Index

Numeric (I32) Specifies which sequence in the 
Sequence Array input is the 
top-level sequence in the 
hierarchy being executed.

Input Current 
Login Info

TYPEDEF— Login Info.ctl Contains login information for 
the current user.

Input Single Pass? Boolean TRUE if called from Single Pass 
mode, FALSE if called from Test 
UUT mode.

Type Name Typedef Description
© National Instruments Corporation 5-19 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

 

u 
The default Test Report callback VI generates a formatted, 
spreadsheet-style report string and returns it in the Test Report control. If 
the sequence has a report file, the Test Report callback VI appends or 
overwrites the report file, depending on the Report File Mode. You view the 
report string on the operator interface panel by clicking the View Test 
Report button. You can modify the Test Report callback VI to generate the
report string in a different format or to perform other actions, such as 
logging result data to a database. 

The default Test Report Callback VI uses the following VIs to access the 
test results from a temporary file, which the Test Executive maintains. 
These VIs can be found in CALLBACK.LLB in the Test Executive 
installation directory:

• Open UUT Results File.vi  

• Read UUT Results File.vi  

• Close UUT Results File.vi  

Post Run-Loop Test
The Test Executive calls the Post Run-Loop Test callback VI when yo
click the Run Step(s) or Loop Step(s) button on the main operator 
interface panel. The Test Executive installs the default Post  Run-Loop  
Test  Callback .vi  in the CALLBACK.LLB VI Library and uses the 
following calling interface. 

Output Test Report String Contains a report string detailing 
the test results for each UUT that 
was tested.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error or 
warning occurred in the 
callback VI.

Type Name Typedef Description

Input Test # Numeric (I32) Contains the index of the run or 
looped test in the sequence.

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
currently loaded test sequence.

Type Name Typedef Description
LabVIEW Test Executive Reference Manual 5-20 www.natinst.com



Chapter 5 Modifying the Test Executive

ts 

 a 
 

. 

u 

tion 
The default Post Run-Loop Test callback VI does nothing and returns 
no error  in the error out control. You can modify this callback VI to log 
or process the results of the step that was run or looped. You can use the 
same VIs used in the default Test Report Callback VI to access the resul
for the testing operation.

Test Failure
The Test Executive calls the Test Failure callback VI when a step with
FAIL Action of Callback  fails. The Test Failure callback VI allows you
to choose the failure action. The Test Executive installs the default Test  
Failure  Callback .vi  in the CALLBACK.LLB VI library in the Test 
Executive installation directory and uses the following calling interface

The default Test Failure callback VI opens a dialog box that prompts yo
to choose one of three actions: Continue, Stop, or Retry. When you click a 
button on this dialog box, the default callback VI returns the selected ac

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.

Type Name Typedef Description

Input Failed Test 
Result

TYPEDEF-Test Result.ctl Contains the test result for the 
failed test.

Input Test # Numeric (I32) Contains the index of the failed 
test in the sequence.

Input Sequence Info TYPEDEF-Sequence.ctl Contains information about the 
currently loaded test sequence.

Input Current 
Login Info

TYPEDEF-Login Info.ctl Contains login information for 
the current user.

Output Action Numeric (I32) Indicates a continue, stop, or 
retry action.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.

Type Name Typedef Description
© National Instruments Corporation 5-21 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

, 

 the 
the 

 

in the Action control. The only values for Action are 0 (Continue), 1 (Stop)
and 2 (Retry). When the Test Failure callback VI returns Continue , the 
Test Executive logs the step failure and continues to run the next test in the 
sequence. When the callback VI returns Stop , the Test Executive stops 
testing the current UUT. When the callback returns Retr y, the Test 
Executive runs the failed step again. If the Test Failure callback returns an 
error in the error out control, the Test Executive stops running the test 
sequence and displays the error in the Test Display. The default Test Failure 
callback VI always returns no error  in the error out control.

You can modify the default Test Failure callback VI if you want to use a 
custom dialog box, to handle the failure automatically, or to handle the 
failure differently depending on your privilege level.

Open Test VI
The Sequence Editor calls the Open Test VI callback VI when you click
Edit Test VI  button in the Sequence Editor. The Test Executive installs 
default Open Test  VI  Callback .vi  in the CALLBACK.LLB VI library in 
the Test Executive installation directory and uses the following calling 
interface.

The default Open Test VI callback opens the front panel of the LabVIEW
test for the test that is being edited. This way, you can edit the LabVIEW 

Type Name Typedef Description

Input Sequence 
Path

File Path Contains the absolute path to the 
sequence file for the sequence 
that is being edited. If the 
sequence has not been saved, this 
input is empty.

Input Test TYPEDEF-Sequence 

Element.ctl

Contains information about the 
test that is being edited.

Output Test Input String If filled, the Sequence Editor 
copies the string into the Input 
Buffer for the test that is being 
edited. If empty, the Sequence 
Editor ignores this output.

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the 
callback VI.
LabVIEW Test Executive Reference Manual 5-22 www.natinst.com



Chapter 5 Modifying the Test Executive

 the 
st 

 VI 
rom 

at 

ith 

e 
are 

ight 
ef 
test from within the Sequence Editor. The default Open Test VI callback 
returns the empty string in the Test Input control and returns no error  in 
the error out control. If the Open Test VI callback returns an error to the 
Test Executive, it displays the error in a message box.

You can modify the Open Test VI callback if you want to generate input 
data for the LabVIEW test that is being edited. For a demonstration of this 
technique, see the Advanced Modifications section of this chapter. 

Test Executive Typedef Controls
The Test Executive install program installs a set of typedef controls in
LabVIEW USER.LIB\  directory, allowing you to create callbacks and te
VIs more easily. These typedef controls define some of the required 
callback VI inputs and outputs and all of the required and optional test
inputs and outputs. The Test Executive typedef controls are available f
the User Controls subpalette of the Controls palette after you install the 
Test Executive development version.

When creating or modifying a callback VI or LabVIEW test, remember th
the Test Executive calls these VIs by name. Therefore, every required input 
or output on the called VI must match in name, type, and data direction w
what the Test Executive expects. For example, if the Test Executive expects 
a callback VI to have a Boolean input control named “abc” on its front 
panel, the call to the VI fails if the name of the control is not “abc”, if th
type is not Boolean, or if it is not a control. Control name comparisons 
case sensitive, so “ABC” does not match “abc”. Also, make sure that the 
required control and indicator names do not have any extra spaces.

Typedefs for Callback VIs
To help make sure that your callback VI inputs and outputs have the r
name, type, and data direction, use the following Test Executive typed
controls when you create or modify these VIs. 

TYPEDEF - Login Info.ctl
TYPEDEF-Login Info.ctl  contains user login information. The 
elements of this cluster are Operating level and User Info. 

Operating level is an enum with the three privilege levels of the Test 
Executive: Developer, Technician, and Operator. 
© National Instruments Corporation 5-23 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

. 
 
 

e 

 

User Info is a string that contains information about the current Test 
Executive user. The default Login callback VI stores the name and 
password of the current operator in the User Info control.

TYPEDEF - Sequence.ctl
TYPEDEF-Sequence.ctl  contains all the specifications for a sequence
The elements of this cluster are Elements, Sequence VIs, Stop on any
failure, Enable Test Report Logging, Test report file, Report file mode,
Description, Seq. load specification, and Path. 

Elements is an array of TYPEDEF-Sequence Element.ctl  typedefs. 
This array contains the definitions for all the steps in the sequence. For 
more information, see the TYPEDEF - Sequence Element.ctl section.

Sequence VIs is an array of file paths. This array contains the paths to th
following sequence VIs in the following order.

index VI
0 PreRun
1 PostRun
2 Pre-Step Callback VI
3 Post-Step Callback VI
4 Pre-UUT Loop Callback VI
5 Pre-UUT Callback VI
6 Post-UUT Loop Callback VI
7 Post-UUT Callback VI
8 Test Report Callback VI
9 Edit Test VI Callback VI
10 Post Run-Loop Test Callback VI
11 Test Failure Callback VI

Stop on any failure is a Boolean flag. If Stop on any failure is TRUE, the 
Test Executive stops the sequence execution whenever any test fails.

Enable Test Report Logging is a Boolean flag. If Enable Test Report 
Logging is TRUE, the default Test Report Callback VI logs the ASCII text 
report to the file specified in the Test report file.

Test report file is a file path that stores the path to the test report file.

Report file mode is a text ring that indicates how results should be stored to
file, if Enable Test Report Logging is TRUE. You can set Report file mode 
to append  or overwrite .

Description is a string containing a description of the test sequence.
LabVIEW Test Executive Reference Manual 5-24 www.natinst.com



Chapter 5 Modifying the Test Executive

ath, 
t, 

e

 

ult 
Seq. load specification is a text ring that determines how the Test Executive 
loads the step resources for the sequence. This allows you to set Seq. load 
specification to Use each  step’s  load spec ., Pre-load all steps , 
or Dynamic -load all steps .

Path is a file path that stores the path to the sequence file. If the sequence 
has not been saved, Path is empty.

TYPEDEF - Sequence Element.ctl
TYPEDEF-Sequence Element.ctl  contains all the specifications for 
asingle step. The elements of this cluster are Element type, Name, VI p
Function name, Input buffer, Limit, Run mode, FAIL action, Loop coun
Dependencies, Load specification, Input buffer?, Invocation info?, 
Show Panel?, Step Fail = Seq. Fail?, and Comment. 

Element type is a text ring with four items: LabVIEW Test, C Test, GOTO, 
and Sequence. The setting of this ring indicates the type of the step.

Name is a string that specifies either the name of a step or the target for a 
GOTO step. No two steps in a sequence can have the same name. Before 
executing a sequence, the Test Executive parses the target of each GOTO 
step. If the Test Executive finds a GOTO target that does not match any step 
name in the sequence, it stops parsing and displays an error to the usr.

VI path is a file path that specifies the resource for the step.

Function name is the name of the function found in the DLL or shared
library identified in VI path to call for C tests.

Input buffer is a string. If Input buffer? is TRUE, the Test Executive passes 
the string data in Input buffer to the LabVIEW test or C test at run time. 

Limit is a string that specifies a type of comparison. The Test Executive 
applies this comparison to the measurements returned by the LabVIEW 
Test or C Test to make a PASS/FAIL determination.

Run mode is a text ring with four items: Normal, Skip, Force PASS, and 
Force FAIL. If you set the Run mode of a step to Normal , the Test 
Executive runs the step’s resource and applies the step’s limit comparison 
to the results. If you set the Run mode of the step to Skip , Force  PASS, or 
Force  FAIL , the Test Executive does not run the step, and it sets the res
for the step to SKIPPED, PASS, or FAIL , respectively.

FAIL action is a text ring with four items: Continue, Stop, Loop, and 
Callback. If you set the FAIL action of a step to Continue , the Test 
© National Instruments Corporation 5-25 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

 

for 

 
.

t 

f 

he 

e 

. 
Executive continues to the next step in the sequence when the step fails.
Setting the FAIL action to Stop  causes the Test Executive to stop testing 
the current UUT when the step fails. If you set the FAIL action to Loop , the 
Test Executive enters a failure loop, which means that the Test Executive 
continues to execute the step until it passes or the maximum loop count 
the step is reached. If you set the FAIL action to Callback , the Test 
Executive calls the Test Failure callback VI to determine whether it should
continue to the next step, stop testing the UUT, or run the failed step again

Loop count is an integer that specifies the maximum number of times tha
the Test Executive should run the step inside a failure loop.

Dependencies is a string that specifies the dependency expression of a step. 
Before executing a sequence, the Test Executive parses the dependencies o
each step in the sequence. If the Test Executive finds an invalid step name 
in any dependency expression, it stops parsing and displays an error to t
operator.

Load specification is a text ring with two items: Pre-load and 
Dynamic-load. When the Test Executive opens a test sequence, it loads th
resources for all steps with a Pre-load Load specification. The Test 
Executive does not load the resources for Dynamic-load steps until they are 
called during the execution of the test sequence.

Input buffer? is a Boolean flag. If Input buffer? is TRUE, the Test Executive 
passes the string data in Input buffer to the LabVIEW test or C test at run 
time. If Input buffer? is FALSE, the Test Executive does not pass Input 
buffer data to the LabVIEW test or C test.

Invocation info? is a Boolean flag. If Invocation info? is TRUE, the Test 
Executive passes invocation information to the LabVIEW test at run time
If I nvocation info? is FALSE, the Test Executive does not pass invocation 
information to the LabVIEW test.

Show Panel? is a Boolean flag. If Show Panel? is TRUE, the Test Executive 
shows the panel of the LabVIEW test before running it and closes the panel 
afterward. If Show Panel? is FALSE, the Test Executive does not show the 
panel of the LabVIEW test while running it.

Step Fail = Seq. Fail? is a Boolean flag. If Step Fail = Seq. Fail? is TRUE, 
the sequence fails if the step fails. If Step Fail = Seq. Fail? is FALSE, the 
result of the step does not affect the result of the sequence.

Comment is a string containing a comment for the step.
LabVIEW Test Executive Reference Manual 5-26 www.natinst.com



Chapter 5 Modifying the Test Executive

 
e 

.

 
he 

un 
 the 

e 

 
ath, 
TYPEDEF - UUT Results.ctl
TYPEDEF-UUT Result.ctl  contains all the UUT ID information and 
sequence result information for a particular UUT. The elements of this
cluster are UUT Info, UUT Abort, UUT Error, UUT Time, and Sequenc
Results. 

UUT Info is a string that contains the UUT Information supplied by the user 
in the Pre-UUT Callback VI.

UUT Abort is a Boolean flag. If UUT Abort is TRUE, the user aborted 
testing on this UUT. If UUT Abort is FALSE, the user did not abort testing

UUT Error is a Boolean flag. If UUT Error is TRUE, an error occurred 
during the testing of this UUT that caused the Test Executive to abort the 
UUT Test Loop. If UUT Error is FALSE, no error occurred during the 
testing of this UUT.

UUT Time is an integer that gives the total execution time for the UUT Test 
in milliseconds. The UUT Execution timer starts immediately before the
PreRun VI starts and stops immediately after the PostRun VI stops. T
timer resolution of your computer affects the accuracy of the timing 
information.

Sequence Results is an array of TYPEDEF-Sequence Result.ctl  
typedefs. This array contains the results for each sequence that was r
during the testing process. The order of the results is the order in which
sequences were executed. The first element in the array is the result for th
top-level sequence executed. For more information, see the following 
TYPEDEF - Sequence Result.ctl section.

TYPEDEF - Sequence Result.ctl
TYPEDEF-Sequence Result.ctl  contains all the step result information
for a particular sequence. The elements of this cluster are Sequence P
PreRun Time, PostRun Time, Test Report Path, and Step Results.

Sequence Path contains the path to the sequence file.

PreRun Time is an integer that gives the execution time of the PreRun VI 
in milliseconds.

PostRun Time is an integer that gives the execution time for the PostRun VI 
in milliseconds.

Test Report Path contains the path to the test report file.
© National Instruments Corporation 5-27 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

 
sult, 

l?. 

 step 

ent 

nt, 
Step Results is an array of TYPEDEF-Test Result.ctl  typedefs. This 
array contains the results for each step (excluding GOTO steps) that was 
run during the testing process. For more information, see the following 
TYPEDEF - Test Result.ctl section.

TYPEDEF - Test Result.ctl
TYPEDEF-Test Result.ctl  contains all the specifications for a single
step result. The elements of this cluster are Element Type, Name, Re
Step Resource, Comment, User Test Output, Execution Time, String 
Measurement, Numeric Measurement, radix, Low Limit, High Limit, 
Comparison, String Limit, Limit Specification, and Step Fail = Seq. Fai

Element Type is a text ring with four items: LabVIEW Test, C Test, GOTO, 
and Sequence. The setting of this ring indicates the type of the step.

Name is the step name of the step that produced the result.

Result is an enum with five items: PASS, FAIL, None, Skipped, and 
Unknown. PASS and FAIL mean that the step passed or failed, respectively. 
None means that the comparison type of the step was Log  onl y, and 
therefore, no PASS/FAIL determination was made for the step. Skipped 
indicates that the step did not execute, and Unknown indicates that the Test 
Executive could not determine if the step passed or failed because the
has no limit specification.

Step Resource is a file path that specifies the resource for the step.

Comment is a string containing a comment generated by the LabVIEW test.

User Test Output is a string containing data generated by the LabVIEW test 
or C test.

Execution Time is an integer that gives the execution time for the step 
resource in milliseconds.

String Measurement is a string measurement that is transmitted by the 
LabVIEW test.

Numeric Measurement is a double-precision, floating-point measurem
that is transmitted by the LabVIEW test or C test.

radix is a text ring with six values: fractional, scientific, decimal, hex, octal, 
and binary. The setting of radix indicates whether Numeric Measureme
Low Limit, and High Limit should appear in fractional, scientific, decimal, 
hexadecimal, octal, or binary notation, respectively.
LabVIEW Test Executive Reference Manual 5-28 www.natinst.com



Chapter 5 Modifying the Test Executive

 
 

e 
Low Limit is a double-precision, floating-point number that the Test 
Executive compares with Numeric Measurement to make a PASS/FAIL 
determination for the step.

High Limit is a double-precision, floating-point number that the Test 
Executive compares with Low Limit and Numeric Measurement to make a 
PASS/FAIL determination for the step.

Comparison is an enum with 14 items: EQ (==), NE (!=), GT (>), LT (<), 
GE (>=), LE (<=), GTLT (> && <), GTLE (> && <=) GELT (>= && <), 
GELE (>= && <=), Boolean, String, Log only, and None. If Comparison 
is EQ, NE, GT, LT, GE, or LE, the Test Executive applies the indicated 
comparison to Numeric Measurement and Low Limit and sets Result 
accordingly. If Comparison is GTLT, GTLE, GELT, or GELE, the Test 
Executive applies the indicated range comparison to Numeric 
Measurement, Low Limit, and High Limit and sets Result accordingly. If 
Comparison is Boolean, the Test Executive sets Result to PASS or FAIL 
based on the Boolean result transmitted by the LabVIEW test or C test. If 
Comparison is String, the Test Executive sets Result to PASS if String 
Measurement equals String Limit and sets Result to FAIL otherwise. This 
string comparison is case sensitive. If Comparison is Log only, the Test 
Executive sets Result to None, logs Numeric Measurement and String
Measurement, and applies no comparison. If Comparison is None, theTest 
Executive sets Result to None, logs no measurement, and applies no 
comparison.

String Limit is a string that the Test Executive compares with String 
Measurement to make a PASS/FAIL determination for the LabVIEW test.

Limit Specification is a string used to store the complete limit specification 
for the step.

Step Fail = Seq. Fail? is a Boolean flag. If Step Fail = Seq. Fail? is TRUE, 
the sequence fails if the step fails. If Step Fail = Seq. Fail? is FALSE, the 
result of the step does not affect the result of the sequence.

Typedefs for LabVIEW Tests
To help make sure that your LabVIEW test inputs and outputs have th
right name, type, and data direction, use the following Test Executive 
typedef controls when you create or modify these VIs. 
© National Instruments Corporation 5-29 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

. In 
 

.

c 
 run 

d 
st 
the 

 
ter 
er 
TYPEDEF - Invocation Info.ctl
TYPEDEF-Invocation Info.ctl  contains run-time information that 
passes from the Test Executive to the LabVIEW test. The elements of this 
cluster are Test Name, Sequence Path, UUT Info, loop #, and UUT #. 

Test Name is the name of the step that is currently running.

Sequence Path contains the absolute file path to the sequence file that is 
currently executing.

UUT Info is a string that contains the UUT Information supplied by the user 
in the Pre-UUT callback VI.

loop # is the number of times that this step has run within a failure loop
a failure loop, the Test Executive repeatedly executes the step until it passes
or the maximum loop count for the step is reached. loop # is 0 for the first 
run of the step, 1 for the second, and so on.

UUT # is an integer that identifies how many UUTs have been tested in this 
UUT Test Loop. UUT # is 0 for the first UUT, 1 for the second, and so on

TYPEDEF - Input buffer.ctl
TYPEDEF-Input buffer.ctl  consists of a string containing test-specifi
input data that passes from the Test Executive to the LabVIEW test at
time. 

TYPEDEF - Mode.ctl
TYPEDEF-Mode.ctl  consists of a test ring containing two items, run an
config, that you use on the front panel of LabVIEW test shells. The Te
Executive identifies the call mode of LabVIEW test shells and passes 
appropriate input value, run or config, to Mode.ctl . For more information 
on LabVIEW test shells, see the Advanced Modifications section of this 
chapter. 

TYPEDEF - Test Data.ctl
TYPEDEF-Test Data.ctl  contains result information that is transmitted
from the LabVIEW test to the Test Executive. The elements of this clus
are PASS/FAIL Flag, Numeric Measurement, String Measurement, Us
Output, and Comment. 
LabVIEW Test Executive Reference Manual 5-30 www.natinst.com



Chapter 5 Modifying the Test Executive

 

n 

W 
.

nt 
.

 

y 

ating 
in 
PASS/FAIL Flag is set by the LabVIEW test to indicate whether the step
passed or failed. When the limit specification for a step is Boolean, the Test 
Executive uses this element to make a PASS/FAIL determination.

Numeric Measurement is a double-precision, floating-point number. When 
the limit specification for a test is EQ (==), NE (!=), GT (>), LT (<), 
GE (>=), LE (<=), GTLT (> && <), GTLE (> && <=) GELT (>= && <), 
GELE (>= && <=), the Test Executive uses this element to make a 
PASS/FAIL determination. The value that the LabVIEW test passes out i
Numeric Measurement is stored in the Test Result cluster of the step.

String Measurement is a string. When the limit specification for a step is 
String, the Test Executive uses this element to make a PASS/FAIL 
determination. The value that the LabVIEW test passes out in String 
Measurement is stored in the Test Result cluster of the test.

User Output is a string. The LabVIEW test stores data of any kind in this 
string by using the Flatten to String function. The data that the LabVIE
test passes out in User Output is stored in the Test Result cluster of the step

Comment is a string. The value that the LabVIEW test passes out in 
Comment is stored in the Test Result cluster of the step. Use the Comme
option for storing comments that you want to include in the test report

Common Modifications
The following sections describe common modifications that you may 
want to make to the Test Executive. You can learn how to make these
modifications by editing the default callback VIs in the CALLBACK.LLB VI 
library in the Test Executive installation directory. Before modifying an
of the default callback VIs, make a backup copy of CALLBACK.LLB.

This section covers the following areas:

• Passwords

• PASS/FAIL/ABO RT banners

• UUT Serial Number prompt

• Test report

Changing Passwords
You can change the passwords that determine the Test Executive oper
level (Developer, Technician, or Operator) by modifying the default Log
callback VI. (See the Operating Levels section in Chapter 1, Introduction, 
© National Instruments Corporation 5-31 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

gin 

e to 

ord 

you 
 

his 
r, 
IL, 
r fail 
 

Is.
for a description of the operating modes.) To modify the default Login 
callback VI, open Login  Callback .vi  in CALLBACK.LLB in the Test 
Executive installation directory. Notice that Login  Callback .vi  has the 
required Login callback inputs and outputs on its front panel. This VI 
makes a subVI call to the Login VI. To examine the front panel of the Lo
VI, show the diagram of Login  Callback .vi , pop up on the subVI call to 
Login, and select Open Front Panel.

To set the password that specifies the Developer level, examine the True 
case of the larger Case structure. Find the string constant, labeled 
Developer  Level  Password , which is wired into the Match Pattern 
function. Replace the string constant with the password you want to us
specify the Developer level. Subsequently, any password typed in that 
contains this sequence of characters sets the Test Executive to Developer 
level. 

To set the password that specifies the Technician level, find the string 
constant labeled Technician  Level  Password  inside the False case of 
the smaller Case structure. Replace this string constant with the passw
you want to use to specify Technician level. If the password entered at the 
prompt contains the character sequence in this string constant, the Test 
Executive sets the level to Technician. If a match is not found for either 
Developer or Technician passwords, the level defaults to Operator. 

Note The password comparison is case sensitive.

Changing PASS/FAIL/ABORT Banners
You can change the PASS, FAIL, and/or ABORT Banner VIs, which 
display the result of a UUT Test, to show a custom screen. To do so, 
must modify the default Post-UUT callback VI. To modify this VI, open
Post-UUT  Callback .vi  in CALLBACK.LLB in the Test Executive 
installation directory. Notice that Post-UUT  Callback .vi  has the 
required Post-UUT callback VI inputs and outputs on its front panel. T
VI makes subVI calls to PASS Banner, FAIL Banner, or ABORT Banne
depending on the UUT Test Results. On a color monitor, the PASS, FA
and ABORT banners have a colored background (green for pass, red fo
and abort), an OK  button, and a free label in a large font containing the
word PASS, FAIL, or ABORT.

You change the appearance of these banners by either revising the existing 
VIs (changing the message, colors, adding graphics, and so forth) or by 
replacing the PASS, FAIL, and/or ABORT Banner VIs with your own VIs. 
Notice that the execution palette and menus are hidden in the Banner V
LabVIEW Test Executive Reference Manual 5-32 www.natinst.com



Chapter 5 Modifying the Test Executive

es 
e 

ts 

n the 

ia an 

d its 

 

at. 

s to 

e 
tring 
time 
Changing the UUT Serial Number Prompt
You customize the prompt that asks for the UUT serial number by 
modifying the default Pre-UUT callback VI. To modify this VI, open 
Pre-UUT  Callback .vi  in CALLBACK.LLB in the Test Executive 
installation directory. Notice that Pre-UUT  Callback .vi  has the required 
Pre-UUT callback VI inputs and outputs on its front panel. This VI mak
a subVI call to the UUT Information VI. To examine the front panel of th
UUT Information VI, show the diagram of Pre-UUT  Callback .vi , pop up 
on the subVI call to UUT Information, and select Open Front Panel. The 
front panel of this VI consists of a string control, its label (which promp
the user to Enter UUT Serial Number), and two buttons, OK  and STOP.

To change the UUT serial number prompt message, retype the label o
front panel using the Labeling tool.

You can make other modifications to the serial number prompt, such as 
adding a routine that reads the serial number from a bar code reader v
RS-232 port, by editing the Pre-UUT callback VI.

Changing the Test Report
The Test Report is generated by the default Test Report callback VI an
subVIs. You can modify the test format of the Test Report to suit your 
needs. 

To modify the default Test Report callback VI, open Test  Report 

Callback .vi  in CALLBACK.LLB in the Test Executive installation 
directory. Notice that Test  Report  Callback .vi  has the required Test 
Report callback inputs and outputs on its front panel. This VI calls two
subVIs, Format Test Report and File Report, and then institutes error 
checking procedures. The File Report VI sends the completed Test Report 
to a specified file and does not need to be changed to modify report form
Make any modifications in the Format Test Report VI block diagram or its 
main subVI, Format UUT.vi .

To change the Test Report header information, make the desired change
the large Concatenate Strings function and its inputs in the Format Test 
Report VI. For example, you might want to include more information in th
header. Stretch the Concatenate Strings function and add the desired s
to an input. Another common change might be to add seconds to the 
display. To do this, change the Boolean constant input to the Get Date/Time 
String VI from FALSE to TRUE.
© National Instruments Corporation 5-33 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

ly 
elimit 
hen 
 a file 

m 

n 
ats 

he 
g 

op 
 to 

UT 
titute 

 

The UUT Test results are generated in the For Loop of the Format Test 
Report VI. This VI converts the data read from a Test Executive temporary 
file to ASCII strings for inclusion in the Test Report.

Using Another Application for Report Generation
The format of a standard Test Report allows other applications to easi
import the report. For example, because the Test Report uses tabs to d
fields in a test result, each of these fields appears in a separate cell w
you load the Test Report into a spreadsheet. Saving the Test Report to
provides a simple mechanism for transferring the report to another 
application for further formatting of test results. 

You may also want to use an interapplication communication mechanis
to have the Test Executive automatically pass the Test Report to another 
application. You can use the communication VIs in LabVIEW for ActiveX 
Automation in Microsoft Windows, Apple Events on the Macintosh, or 
TCP/IP and UDP on all platforms. Using interapplication communicatio
requires that you be familiar with the particular protocols and data form
the recipient application expects.

Advanced Modifications
This section describes advanced modifications that you can make to t
Test Executive. The section covers result logging alternatives and usin
LabVIEW test shells.

Result Logging Alternatives
By default, the Test Executive logs the results for an entire UUT Test Lo
to file. The default Test Report callback VI writes the Test Report string
the Report File as determined by the Report File Mode. This section 
discusses two result logging alternatives:

• Logging step results on a per-UUT basis

• Logging step results to a database using the SQL Tools (Windows 
only)

Logging Test Results on a Per-UUT Basis
You can modify the Test Executive to log UUT step results on a per-U
basis as soon as a UUT completes testing. To set up this method, subs
a VI named Per-UUT  Logger  Callback .vi  for your Post-UUT callback 
VI and Test  String  Callback .vi  for your Test Report callback VI. Both
LabVIEW Test Executive Reference Manual 5-34 www.natinst.com



Chapter 5 Modifying the Test Executive

 

tring 
p, 

T 
port 

 

 
t uses 

y 

ce 

ou 
 use 
of these callback VIs are in the CALLBACK.LLB VI library in the Test 
Executive installation directory.

Per-UUT Logger Callback.vi
In addition to showing the PASS, FAIL, or ABORT banner, Per-UUT 

Logger  Callback .vi  creates a report string for the current UUT. If the
current UUT is the first in the UUT Test Loop, Per-UUT  Logger 

Callback .vi  appends a report header to the report string and then, 
depending on the Report File Mode, either overwrites or appends this s
to the report file. If the current UUT is not the first in the UUT Test Loo
Per-UUT  Logger  Callback .vi  appends the report string to the Report 
File.

Test String Callback.vi
Test  String  Callback .vi  creates the Test Report string from the UU
Test Loop results, but it does not write this Test Report string to the Re
File.

Using the Edit Sequence Callbacks dialog box in the Sequence Editor
allows you to make Per-UUT  Logger  Callback .vi  and Test  String  
Callback .vi  the Post-UUT and Test Report callbacks for any sequence. 
Alternately, you can edit the Test Executive system configuration file, 
testexec .ini , and make these callback VIs the default Post-UUT and
Test Report callbacks for all sequences. When you run a sequence tha
these two callback VIs, the Test Executive logs UUT Test results to file on 
a per-UUT basis. 

Logging Results to a Database Using the LabVIEW 
SQL Tools (Windows only)
Using the LabVIEW SQL Tools, included in the Enterprise Connectivit
Toolset, you can log your UUT, sequence, and step results to an 
SQL-compliant database. The DATABASE directory in the Test Executive 
installation directory contains an alternate testexec.ini  file, as well 
as alternate operator interface and callback VIs that demonstrate the 
integration of the LabVIEW Test Executive and the SQL Tools. All sour
code is provided for these VIs, so you can modify them to meet your 
application-specific needs. These VIs were written using SQL Tools. If y
want to use them with a previous version of the SQL Tools, edit them to
the equivalent SQL VIs from the previous version.
© National Instruments Corporation 5-35 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

nce 

n 
 

on 

cified 
 to 
 
es 
Modifications to the System Configuration File
To use the supplied database examples, you must add several prefere
values to the [Preferences]  section of the testexec.ini  file. A 
sample configuration file incorporating these modifications is located i
the DATABASE directory in the Test Executive installation directory. The
modifications are as follows:

• EnableDatabaseSaving=TRUE  (or FALSE)

• ConnectionString= a valid data source name for your system

• UUTTableName=name of table in which to store UUT results

• SequenceTableName= name of table in which to store sequence 
results

• StepTableName= name of table in which to store step results

The Alternate Callback VIs
The Create DB Tables Callback.vi  and Per-UUT DB Logger 

Callback.vi  are alternate callback VIs that enable database logging 
your Test Executive system. These VIs are found in the 
DATABASE\CALLBACK.LLB VI library in the Test Executive installation 
directory.

Create DB Tables Callback.vi
The Create DB Tables Callback.vi  is a Pre-UUT Loop callback VI. 
It is responsible for creating three database tables in the database spe
by the ConnectionString  preference. These three tables are referred
as the UUT Results Table, the Sequence Results Table, and the Step
Results Table. The names of the tables are specified by the preferenc
UUTTableName, SequenceTableName , and StepTableName , 
respectively. The EnableDatabaseSaving  preference determines 
whether the tables are actually created.

The three tables contain the following fields:

• UUT Results Table

– Serial Number

– Result

– Date

– Operator

– Top-level Sequence Name

– Test Time
LabVIEW Test Executive Reference Manual 5-36 www.natinst.com



Chapter 5 Modifying the Test Executive

e 

 

• Sequence Results Table

– Serial Number

– Sequence Name

– Result

– Pre-Run Execution Time

– Post-Run Execution Time

• Step Results Table

– Serial Number

– Sequence Name

– Step Name

– Resource

– Result

– Execution Time

– Comment

– User Output

– Comparison Type

If the tables already exist when the Create DB Tables Callback VI runs, the 
Test Executive uses the existing tables to record results.

Per-UUT DB Logger Callback.vi
The Per-UUT DB Logger Callback.vi is a Post-UUT callback VI. In 
addition to showing the PASS, FAIL, or ABORT banner, the VI logs th
result information to the tables created by the Create DB Tables 

Callback.vi . Whether this VI logs the information to the database is 
determined by the EnableDatabaseSaving  preference.

The Per-UUT DB Logger Callback.vi does not necessarily log all 
measurement information to the Step Results Table. If the step comparison
is numeric, the Per-UUT DB Logger Callback VI logs numeric 
measurement and radix information. If the comparison is string, the 
Per-UUT DB Logger Callback VI logs string measurement and limit 
information. If the comparison is log only, the Per-UUT DB Logger 
Callback VI logs both the numeric and the string information.

Using the Sequence Options dialog box in the Sequence Editor, you can 
specify the Create DB Tables Callback VI and the Per-UUT DB Logger 
Callback VI as the Pre-UUT Loop and Post-UUT Callback VIs, 
respectively, for any sequence. Alternately, you can edit the Test Executive 
© National Instruments Corporation 5-37 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

s. 

e 
ile. 
el 

 to 

d 

n 
he 

s 
 of 
system configuration file, testexec.ini , and make these callback VIs 
the default Pre-UUT Loop and Post-UUT callback VIs for all sequence
When you run a sequence that uses these two callback VIs (or any sequence 
if you modify the system configuration file), the Test Executive logs UUT 
Results, Sequence Results, and Step Results to the specified database on a 
per-UUT basis if EnableDatabaseSaving  is TRUE.

Operator Interface VI
Use the alternate operator interface VI found in DATABASE

OPERATOR.LLB in the Test Executive installation directory to browse th
contents of the database tables specified in the system configuration f
The alternate operator interface VI has an additional button on its pan
called Database Browser.... Click this button to browse the database 
contents.

Using LabVIEW Test Shells
The Test Executive allows your end users to use LabVIEW Test shells
design test sequences using instrument drivers without doing any 
LabVIEW programming. A LabVIEW Test shell consists of a special kin
of test VI that runs in two modes, config mode and run mode. A LabVIEW 
Test shell has the following calling interface.

Each LabVIEW Test shell must have these required inputs and outputs o
its front panel and wired to the correct connector pane terminal, with t
exception of the mode input. Like any other test VI, a LabVIEW Test shell 
also can contain additional controls and indicators on its front panel, a
long those controls and indicators are not wired to the connector pane

Type Name Typedef Description

Input mode TYPEDEF-mode.ctl Determines the mode in which 
the LabVIEW Test shell runs.

Notice that this control is not 
wired to the connector pane of 
the VI.

Input Input buffer TYPEDEF-Input buffer.ctl Receives input data.

Output Test Data TYPEDEF-Test Data.ctl Transmits data to its caller. 

Output error out Standard LabVIEW error out 
cluster

Indicates whether an error 
or warning occurred in the Test 
VI shell. 
LabVIEW Test Executive Reference Manual 5-38 www.natinst.com



Chapter 5 Modifying the Test Executive

lso 
 

 

 

 

nce 
 

ry 
nce 

r the 
fig 
s.

on, 
the VI. Notice that the two required outputs for a LabVIEW Test shell, Test 
Data and error, are the same as the two required outputs for a test VI. A
notice that the Input buffer input, which is optional for test VIs, is required
for a LabVIEW Test shell.

In run mode, the LabVIEW Test shell executes just like a test VI and 
transmits result and error information in Test Data and error. In run mode, 
the shell VI assumes that Input buffer contains a flattened cluster of input
values and uses the Unflatten From String function to retrieve the input 
values.

In config mode, the LabVIEW Test shell acts like a dialog VI and allows 
the user to set the values of various input controls. In this mode, you click
an OK  button after setting the control values. Then, the LabVIEW Test 
shell bundles the control values into a cluster, flattens the cluster to a string,
and returns the string in the User Output element of Test Data.

If you create a LabVIEW Test shell, use the Test Executive typedef 
controls. For more information on these controls, see the Test Executive 
Typedef Controls section earlier in this chapter.

Example Sequence Using LabVIEW Test Shells
When using LabVIEW Test shells to implement sequences, the seque
developer can configure instrument drivers without doing any LabVIEW
programming. In a no-programming sequence, you must use an 
auto-configure Open Test VI callback and LabVIEW Test shells for eve
step. A sequence developer creates the sequence by using the Seque
Editor to add steps to the sequence, selecting LabVIEW Test shells fo
steps, and configuring the LabVIEW Test shells by calling them in con
mode. As an example of this process, perform the following operation

1. Run the Test Executive and log in as a developer.

2. Click the Edit  button to invoke the Sequence Editor.

3. Select Sequence»Sequence Options…to select an auto-configure 
Open Test VI callback for this sequence. In the Sequence VIs secti
select the Edit Test VI callback from the callback ring. Click the 
Browse button and choose the auto-configure callback VI named 
Configure Test VI Callback.vi  in the CALLBACK.LLB VI 
library in the Test Executive installation directory. Click the OK  button 
to confirm your changes.

4. Back in the Sequence Editor, click the New Step button and enter 
Fluke  45 Config  for the step name. Click the Select Resource button 
and select the LabVIEW Test shell named Fluke  45 Config Shell  
© National Instruments Corporation 5-39 LabVIEW Test Executive Reference Manual



Chapter 5 Modifying the Test Executive

s 
 
nce 
 

ed 

 

VI in the TESTS\TEST_VIS .LLB VI library in the Test Executive 
installation directory.

5. To configure this LabVIEW Test shell, click the Edit Test VI  button. 
This calls the auto-configure callback Configure  Test  VI 

Callback  VI, which in turn calls the Test VI shell the Fluke 45 Config 
Shell VI in config mode. When this happens, the front panel of the 
Fluke 45 Config Shell VI appears and allows you to set the values of 
the four input controls on the panel. 

6. When you have finished entering values, click the OK  button. The 
Fluke 45 Config Shell VI flattens the values to a string and pas
them back to the auto-configure callback VI. The auto-configure
callback VI passes the same flattened string back to the Seque
Editor, which stores the string in the input buffer of the Fluke 45
Config step.

7. If you click the Edit Test VI  button again, the process repeats, 
allowing you to examine or modify the input values you have entered.

8. Set the load specification for the step to Dynamic load.

9. Click the OK  button on the Sequence Editor panel to confirm the 
changes you have made and return to the Test Executive. 

The LabVIEW Test VI shell Fluke  45 Config  Shell  makes a subVI call 
to the test VI Fluke  45 Config  in the TESTS\TEST_VIS .LLB VI library 
in the Test Executive installation directory. This subVI call has been 
configured to Suspend  when called , so you can see the values that are 
passed to the test VI by the LabVIEW Test shell at run time.

10. Click the Single Pass button to run the test sequence once. The Test 
Executive executes the Fluke 45 Config Shell VI in run mode, passing 
it the flattened input string in the Input buffer. The Fluke 45 Config 
Shell VI unflattens the Input buffer string and passes the input values 
to the LabVIEW Test VI Fluke  45 Config . The Fluke 45 Config VI 
suspends when called, showing its front panel so you can examine the 
input values. Notice that the values are the same as those you enter
when you configured the test in the Sequence Editor.

11. Click the run  button to run the suspended test VI Fluke  45 Config  
VI. Click the return to caller button to terminate the test VI.

12. Save this example sequence under the name NPROGRAM.SEQ.

If you examine the auto-configure callback VI Configure  Test  VI 

Callback , you see that it calls the LabVIEW Test shell in config mode and 
passes it the current contents of Input buffer. This way, the shell VI displays 
the most recent user settings for the input controls. You can use this method
LabVIEW Test Executive Reference Manual 5-40 www.natinst.com



Chapter 5 Modifying the Test Executive
to create no-programming sequences of any length. Figure5-2 shows the 
configuration and execution mechanisms for LabVIEW Test shells.

Figure 5-2.  Test VI Shell Configuration and Execution

Edit Test VI
Callback

Test VI 
Shell

Test VI
Shell

Test VI

Sequence Editor

Sequence Editor

Configuration

Execution

Calls auto-configure callback,
passes path to Test VI Shell.

Calls Test VI Shell in run mode,
passes flattened input buffer.

Unflattens Input buffer, calls
test VI with unflattened inputs.

Returns flattened inputs to
Sequence Editor in Test Input.

Returns Test Data and error
to Test Executive.

Returns Test Data and error
to Test VI Shell.

Returns flattened inputs to
auto-configure callback in
Test Data.

Call Test VI Shell in config
mode, passes Input buffer.
© National Instruments Corporation 5-41 LabVIEW Test Executive Reference Manual



© National Instruments Corporation 6-1 LabVIEW Test Executive 
6

ive 

e 
 the 
 test 
ng 
tive, 
tem. 

 
ls 
. 

tor 
Deploying the Test Executive

This chapter explains how to build and deploy a LabVIEW Test Execut
Run-Time System on a test station computer.

LabVIEW Test Executive Run-Time System
Using the LabVIEW Application Builder, you can build a Test Executiv
Run-Time System. This Run-Time System is an executable version of
Test Executive Operator Interface and Engine. You can distribute it to a
station computer without an accompanying LabVIEW installation, savi
both money and installation space. When you purchase the Test Execu
you receive a license to create and use one copy of the Run-Time Sys
Please contact National Instruments for additional licenses.

Building a Run-Time System
Included with the Test Executive Development System installation is a
LabVIEW Application Builder build script file. The setup program instal
this script file in lvexec.bld  in the Test Executive installation directory
To build a Run-Time System executable, load this script file into the 
LabVIEW Application Builder utility. Building this script produces an 
executable file named lvtert.exe  (lvtert  on Macintosh and Unix) in 
your Test Executive directory. This executable consists of the Text 
Executive Operator Interface and Engine built into an executable 
application.

The default build script file builds the Run-Time System using the Opera
Interface VI OPERATOR.LLB\Test  Executive  in the Test Executive 
installation directory. To build the Run-Time System using a different 
Operator Interface VI, modify the build script to specify a different 
top-level VI for the application. Refer to the LabVIEW Application Builder 
Release Notes for more information about using the Application Builder.
Reference Manual



Chapter 6 Deploying the Test Executive

he 

or a 
ng 

h as 
that 
 
 test 

ave 
can 
ing 

, 

 to 

I 
at 
Note On Windows NT/98/95, you must install the LabVIEW Run-Time Engine to run t
Test Executive Run-Time System and to run executables. Refer to the LabVIEW 
Application Builder Release Notes for more information on the LabVIEW Run-Time 
Engine.

Other Required Components for a 
Complete Run-Time System

The Run-Time System executable is not the only component required f
complete Test Executive installation. You also must provide the followi
customizable components:

• System Callback VIs

• Default Sequence Callback VIs

• testexec.ini  file

Additionally, you also must provide any test sequences, resources suc
test VIs and shared libraries, and non-default Sequence Callback VIs 
you use with the Run-Time System installation. The following sections
describe how to prepare these external components for distribution to a
station computer for use with a Run-Time System.

Callback and Test VIs
When preparing callback and test VIs for distribution to a test station 
computer for use with the Test Executive Run-Time System, you must s
the VIs and their entire hierarchies to a new location. The new location 
be either a directory or a VI library. You must then distribute the result
directories or VI libraries to the test station computer.

To save a Test Executive VI for distribution with the Run-Time System
complete the following steps:

1. Select Project»Test Executive»Utilities»Save Test Executive VI for 
Distribution… .

2. Using the first file dialog box, select the Test Executive VI you want
save for distribution. Click on the OK  button. A second dialog box 
appears.

3. Using the second file dialog box, choose a new location for this V
and its subVIs. You also can create new directories or a VI library 
this time.
LabVIEW Test Executive Reference Manual 6-2 www.natinst.com



Chapter 6 Deploying the Test Executive

s. 
iles 

) to 

.

 VI 

ied 

any 

est 

back 
ing 
 for 
re 

 
y as 

aths 
the 
4. Choose whether to save the VIs with or without their block diagram
Saving without diagrams is not required, but it makes the resulting f
smaller.

5. LabVIEW then saves your Test Executive VI and all of its subVIs 
(excluding those VIs already present in the Test Executive engine
the directory or VI library you specified in step 3.

6. Use LabVIEW to mass compile the resulting VI library or directory

You must follow the procedure listed in the previous paragraph for every
required to create a complete Test Executive. These VIs include:

• All System Callback VIs and default Sequence Callback VIs specif
in your testexec.ini  file

• All Sequence Callback VIs and Pre-Run/Post-Run VIs needed by 
sequence that you will execute with this Test Executive installation

• All test VIs needed by any sequence that you will execute with this T
Executive installation

Tip To streamline the saving process, create a VI that has all of your test VIs or call
VIs on its diagram. Then save this VI using the steps listed earlier in this section. Us
this streamlined method, you do not have to follow the steps for saving VIs individually
every VI used with the Test Executive. Instead, you only perform the saving procedu
once.

The testexec.ini File
The testexec.ini  file tells the engine where to find all of the external
components of the Test Executive. It must reside in the same director
the Run-Time System executable file and provides the following 
information to the Test Executive engine:

• Locations of all system callback VIs

• Locations of all default sequence callback VIs

• Preference values

All path values must be valid for the test station computer and can be p
to local files or files on a shared network. For more information about 
format of the testexec.ini  file, refer to the System Configuration File, 
testexec.ini section of Chapter 5, Modifying the Test Executive.
© National Instruments Corporation 6-3 LabVIEW Test Executive Reference Manual



Chapter 6 Deploying the Test Executive

ch 
aths 

 

 

Test Sequences
Distribute the sequence files to be used with your Test Executive 
installation. Depending on the Sequence Path Specification used in ea
sequence file, you might need to update the files to contain the correct p
to test resources and non-default callback VIs, including Pre-Run and
Post-Run VIs.

Shared Libraries (C Test Resources)
For shared library resources, distribute the DLL or shared library along
with any run-time libraries required by that DLL or shared library.
LabVIEW Test Executive Reference Manual 6-4 www.natinst.com



© National Instruments Corporation A-1 LabVIEW Test Executive 
A

 

 

Common Questions

This appendix includes a list of common questions you may have when 
using the Test Executive.

How easy is it to incorporate my existing LabVIEW tests into the Test 
Executive? 

You must to add two clusters to your existing LabVIEW VIs to pass status
information to the Test Executive. Additonally, the VI must have the correct 
connector pane configuration required by the Test Executive. Chapter 4, 
Creating Tests and Test Sequences, explains in detail how to add a 
LabVIEW test to the Test Executive.

How can I have individual steps displayed as they are executing? 

In the Sequence Editor, select Yes in the Show VI Panel at Run-Time ring 
control for the step. For more information, refer to Chapter 4, Creating 
Tests and Test Sequences.

Is it easy to modify the Test Executive to fit my own needs? 

The Test Executive uses a modifiable operator interface VI and modifiable 
callback VIs to implement much of its functionality. To change the 
behavior of the Test Executive, you can edit or replace any of these VIs. For 
more information about modifying these VIs, refer to Chapter 5, Modifying 
the Test Executive. 

I have a test sequence that contains several step resources. How can I 
keep the Test Executive from loading all of the step resources into 
memory when I open the sequence? Is there a way to load a step 
resource into memory only when it is needed? 

Normally, when the Test Executive opens a test sequence, it loads all the
step resources that the sequence needs into memory. This process is called 
pre-loading the resources. If you do not want the Test Executive to pre-load 
a resource, use the Sequence Editor to set the load specification field for 
that step to dynamic-load . For more information, refer to Chapter 4, 
Creating Tests and Test Sequences.
Reference Manual



Appendix A Common Questions

a 

l 

er 

 to 

ay 
 
 

e 

 
 on 
How can an operator or technician specify a filename to log test 
results? 

Normally in the Test Executive, only the developer can modify the filename 
of the test report. This modification is typically made in the Sequence 
Editor. For the operator or technician to specify a file, you must first place 
a path control on the Test Executive front panel. Next, modify the block 
diagram of the operator interface VI to copy the path in this control to 
global variable. Finally, modify the callback VI that logs test results 
(Post-UUT, Post-UUT Loop, or Test Report) to use the path in the globa
variable instead of the report file path. For more information about 
modifying the operator interface VI and the callback VIs, refer to 
Chapter 5, Modifying the Test Executive.

How can I build a filename from the serial number of the UUT? 

The default Pre-UUT callback VI prompts the user for the serial numb
and passes it back to the Test Executive in the UUT Info output. The Test 
Executive stores this information in the UUT Results and passes it out
the Post-UUT, Post-UUT Loop, and Test Report callback VIs. You can 
modify any one of these callback VIs to retrieve the serial number, build the 
file path, and store the result data to file.

Does the Test Executive support the use of localized decimal points?

The Test Executive supports the use of localized decimal points for displ
purposes. If you set your LabVIEW Development System (or the run-time
executable in the case of the Test Executive Run-Time System) preference
to Use localized decimal point , the Test Executive displays and 
reports use your default system decimal point. 

Note ASCII sequences files always denote numeric information using a period (“.”) as th
decimal point.

Can I modify the Test Executive to have it open a particular sequence 
file when launched?

To have the Test Executive open a specific sequence file when launched, 
specify the path to the sequence file in the Path to Seq. File control on the
Operator Interface VI. This control is located beneath the main controls
the front panel of the VI. After entering the full path to the sequence file, 
pop up on the control and select Data Operations»Make Current Value 
Default. Finally, save the changes to the VI.

When you specify a file path in the Path to Seq. File control, the Test 
Executive opens that sequence file when launched.
LabVIEW Test Executive Reference Manual A-2 www.natinst.com



Appendix A Common Questions

 
ecify 

W 

 all 

 

 

Can I call the Test Executive as a subVI?

You can call the Test Executive Operator Interface VI as a subVI. The VI
has the standard error input and output clusters and a path input to sp
the initial sequence file to load, if one is desired.

I am running the Test Executive under UNIX, and the text on the user 
interface panels is too large for the available space. Can I resize the 
text?

Depending on the configuration of your X server software, the text on the 
Test Executive user interface panels might be too large for the space 
allotted. If this is the case, change the default Application Font for 
LabVIEW (or the run-time executable in the case of the Test Executive 
Run-Time System) to a smaller size font. You can modify the font size in 
the LabVIEW Preferences dialog box. For more information about 
changing default fonts, see Chapter 7, Customizing Your Environment, in 
the G Programming Reference Manual.

Does the Test Executive reserve any particular error codes?

The Test Executive uses error codes 5000-5003. When creating LabVIE
Tests, C Tests, and callback VIs, do not use any of these error codes.

When National Instruments releases a new version of LabVIEW, will 
my Test Executive still work?

When you upgrade your LabVIEW installation, you must mass compile
of the Test Executive VI libraries and any test and callback VIs that you 
have created. Additionally, you must rebuild your Run-Time System 
executable using the new version of the LabVIEW Application Builder.

Can I customize the initial values of properties of new steps in the 
Sequence Editor?

To customize the initial values of properties of new steps in the Sequence
Editor, edit the global variable GLOBAL-New Step Default.vi  located 
in ENGINE.LLB in the Test Executive initialization directory. Modify the 
step properties in the global variable to the initial values you desire, select
Operate»Make Current Values Default, and save the file. Any new steps 
you create in the Sequence Editor will then have the new initial property 
values.
© National Instruments Corporation A-3 LabVIEW Test Executive Reference Manual



© National Instruments Corporation B-1 LabVIEW Test Executive 
B

ted 
ou 
vert 
ents 

 or 

 the 

st 

e file 

 box.
Sequence Conversion Notes

This appendix describes the steps for converting a test sequence crea
with Version 4.0 or 5.0 of the Test Executive to the current version. If y
have Version 3.0 sequences, convert them to Version 4.0 and then con
those sequences to the latest version. Please contact National Instrum
technical support for assistance with this conversion.

Version 4.0 and 5.0 Conversion
Perform the following steps to convert sequence files from Version 4.0
5.0 to the latest version.

1. Use the Sequence File Converter to convert your sequence files to
new format.

2. Use LabVIEW to compile all Version 4.0 or 5.0 test VIs with the late
typedef controls.

Step 1—Use the 5.0 Sequence File Converter
The 5.0 Sequence File Converter is a LabVIEW VI that converts your 
Version 4.0 sequence files to Version 5.0.

To load the Sequence File Converter, perform the following steps.

1. Launch LabVIEW.

2. Select Project»Test Executive»Utilities»Sequence File 
Converter….

With the Sequence File Converter, you can open any 4.0 or 5.0 sequenc
and convert it to the latest version. The following section explains the 
controls and indicators on the Sequence File Converter panel.

Controls
Open…
The Open… button displays a dialog box that prompts you to select a 
sequence file. You can select 4.0 or 5.0 sequence files from this dialog
Reference Manual



Appendix B Sequence Conversion Notes

r the 
ence 

ded 

ded 

 for 
the 

ef 
he 
e 
Convert to 5.0…
When you click this button, the Sequence File Converter converts the 
currently loaded 4.0 or 5.0 sequence file to the latest version. It then 
displays a dialog box that prompts you to enter a name and location fo
new 5.0 sequence file. When no 4.0 sequence file is loaded in the Sequ
File Converter, this button is disabled.

Quit
The Quit  button stops the Sequence File Converter operation.

Indicators
Sequence Name
The Sequence Name indicator displays the filename of the currently loa
sequence.

Sequence Version
The Sequence Version indicator displays the version of the currently loa
sequence.

Sequence File Path
The Sequence File Path indicator shows the complete file path of the 
currently loaded sequence.

Sequence Description
The Sequence Description indicator displays the sequence description
the currently loaded sequence. If no description has been entered for 
sequence, this indicator will be empty.

Step 2—Compile Your Test VIs
To make sure that all your test VIs use the latest Test Executive typed
controls, you must compile those VIs with the LabVIEW after installing t
Test Executive. To compile your test VIs, you must complete one of th
following steps.

• Open each test VI in LabVIEW and save the changes to it.

• Use LabVIEW’s mass compile operation (File»Mass Compile…) to 
compile an entire directory or library of VIs.
LabVIEW Test Executive Reference Manual B-2 www.natinst.com



© National Instruments Corporation C-1 LabVIEW Test Executive 
C

u in 
d 
ve 
s.

 
ical 
aily, 

 
rs or 
ts. 
nces 

line. 
bed 
d 

st 

 
ges 
Technical Support Resources

This appendix describes the comprehensive resources available to yo
the Technical Support section of the National Instruments Web site an
provides technical support telephone numbers for you to use if you ha
trouble connecting to our Web site or if you do not have internet acces

NI Web Support
To provide you with immediate answers and solutions 24 hours a day,
365 days a year, National Instruments maintains extensive online techn
support resources. They are available to you at no cost, are updated d
and can be found in the Technical Support section of our Web site at 
www.natinst.com/support .

Online Problem-Solving and Diagnostic Resources
• KnowledgeBase—A searchable database containing thousands of

frequently asked questions (FAQs) and their corresponding answe
solutions, including special sections devoted to our newest produc
The database is updated daily in response to new customer experie
and feedback.

• Troubleshooting Wizards—Step-by-step guides lead you through 
common problems and answer questions about our entire product 
Wizards include screen shots that illustrate the steps being descri
and provide detailed information ranging from simple getting starte
instructions to advanced topics.

• Product Manuals—A comprehensive, searchable library of the late
editions of National Instruments hardware and software product 
manuals.

• Hardware Reference Database—A searchable database containing
brief hardware descriptions, mechanical drawings, and helpful ima
of jumper settings and connector pinouts.

• Application Notes—A library with more than 100 short papers 
addressing specific topics such as creating and calling DLLs, 
developing your own instrument driver software, and porting 
applications between platforms and operating systems.
Reference Manual



Appendix C Technical Support Resources

al 
nt 

 
nts 

n 
 

ch 
u 

al 
our 

 

0, 

 

, 
Software-Related Resources
• Instrument Driver Network —A library with hundreds of instrument 

drivers for control of standalone instruments via GPIB, VXI, or seri
interfaces. You also can submit a request for a particular instrume
driver if it does not already appear in the library.

• Example Programs Database—A database with numerous, 
non-shipping example programs for National Instruments 
programming environments. You can use them to complement the
example programs that are already included with National Instrume
products.

• Software Library —A library with updates and patches to applicatio
software, links to the latest versions of driver software for National
Instruments hardware products, and utility routines.

Worldwide Support
National Instruments has offices located around the globe. Many bran
offices maintain a Web site to provide information on local services. Yo
can access these Web sites from www.natinst.com/worldwide .

If you have trouble connecting to our Web site, please contact your loc
National Instruments office or the source from which you purchased y
National Instruments product(s) to obtain support.

For telephone support in the United States, dial 512 795 8248. For 
telephone support outside the United States, contact your local branch
office:

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 2
Brazil 011 284 5011, Canada (Ontario) 905 785 0085, 
Canada (Québec) 514 694 8521, China 0755 3904939, 
Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Hong Kong 2645 3186, India 91805275406, 
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, 
Korea 02 596 7456, Mexico (D.F.) 5 280 7625, 
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, 
Norway 32 27 73 00, Singapore 2265886, Spain (Madrid) 91 640 0085
Spain (Barcelona) 93 582 0251, Sweden 08 587 895 00, 
Switzerland 056 200 51 51, Taiwan 02 2377 1200, 
United Kingdom 01635 523545
LabVIEW Test Executive Reference Manual C-2 www.natinst.com



Glossary
d 
e for 

 

Test 
s 
 VIs 

y one 
N, 

 

A

ASCII American Standard Code for Information Interchange.

B

block diagram Pictorial description or representation of a program or algorithm. In 
LabVIEW, the block diagram, which consists of executable icons calle
nodes and wires that carry data between the nodes, is the source cod
the VI. The block diagram resides in the Diagram window of the VI.

Boolean controls 
and indicators

Front panel objects used to manipulate and display input and output 
Boolean (TRUE or FALSE) data. Several styles are available, such as
switches, buttons, and LEDs.

C

callback VIs VIs designed for specific interface and data-logging operations. In the 
Executive, the system callback VIs handle interface operations, such a
login and sequence opening and closing, while the sequence callback
handle run-time and edit-time events.

case One subdiagram of a Case structure.

Case structure Conditional branching control structure, which executes one and onl
of its subdiagrams based on its input. It is the combination of the IF, THE
ELSE, and CASE statements in control flow languages.

cluster A set of ordered, unindexed data elements of any data type including
numeric, Boolean, string, array, or cluster. The elements must be all 
controls or all indicators.

cluster shell Front panel object that contains the elements of a cluster.

compile Process that converts high-level code to machine-executable code. 
LabVIEW automatically compiles VIs before they run for the first time 
after creation or alteration.
© National Instruments Corporation G-1 LabVIEW Test Executive Reference Manual



Glossary

als, 

e 

a type 
log 
ou 
 and 

tants 
 a 
onics 
connector Part of the VI or function node that contains its input and output termin
through which data passes to and from the node.

control Front panel object for entering data to a VI interactively or to a subVI 
programmatically.

Controls menu Menu of controls and indicators.

current VI VI whose Panel window, Diagram window, or Icon Editor window is th
active window.

D

data logging Generally, to acquire data and simultaneously store it in a disk file. 
LabVIEW file I/O functions can log data.

datalog file File that stores data as a sequence of records of a single, arbitrary dat
that you specify when you create the file. While all the records in a data
file must be of a single type, that type can be complex. For instance, y
can specify that each record is a cluster containing a string, a number,
an array. 

dependency Conditional execution of one step based on the result of another.

Diagram window VI window that contains the block diagram code.

dialog box An interactive screen with prompts in which you specify additional 
information needed to complete a command.

E

edit mode The mode in which you create or edit a VI.

enumerations Type controls and constants that are similar to ring controls and cons
except in the way they display data. When an enumeration is wired to
Case structure, cases are named according to the enumeration’s mnem
rather than traditional numeric values.
LabVIEW Test Executive Reference Manual G-2 www.natinst.com



Glossary

 
s, 

ues 
d 

ront 

 set 
l or 
 to 

es 
F

front panel The interactive user interface of a VI. Modeled from the front panel of
physical instruments, it is composed of switches, slides, meters, graph
charts, gauges, LEDs, and other controls and indicators.

function Built-in execution element, comparable to an operator, function, or 
statement in a conventional language.

G

Global variable A built-in LabVIEW object you use to easily access a given set of val
throughout your LabVIEW application. A global variable is a special kin
of VI with front panel controls that define the data type of the global 
variable.

I

indicator Front panel object that displays output.

L

label Text object used to name or describe other objects or regions on the f
panel or block diagram.

Labeling tool Tool used to create labels and enter text into text windows. 

LabVIEW Laboratory Virtual Instrument Engineering Workbench.

Local variable A variable assigned to a front panel control or indicator on a VI. Once
up, a local variable always reads from or writes to the front panel contro
indicator. You can use a local variable to read from an indicator or write
a control and in effect create an input-output control that LabVIEW do
not normally have.

M

MB Megabytes of memory.
© National Instruments Corporation G-3 LabVIEW Test Executive Reference Manual



Glossary

t 

g 

ns.

 

lly 

nd 

 text.
N

numeric controls
and indicators

Front panel objects used to manipulate and display or input and outpu
numeric data. 

O

object Generic term for any item on the front panel or block diagram, includin
controls, nodes, wires, and imported pictures.

P

palette menu Menu that displays a palette of pictures that represent possible optio

Panel window VI window that contains the front panel, the execution palette and the
icon/connector pane.

pop up To call up a special menu by clicking an object with the mouse. 
(In Windows, click the right mouse button to pop up.)

pull-down menus Menus accessed from a menu bar. Pull-down menu options are usua
general in nature.

R

ring control Special numeric control that associates 32-bit integers, starting at 0 a
increasing sequentially, with a series of text labels or graphics.

run mode The mode in which you execute a VI.

S

string controls and 
indicators

Front panel objects used to manipulate and display or input and output

structure Program control element, such as a Sequence, Case, For Loop, or 
While Loop.
LabVIEW Test Executive Reference Manual G-4 www.natinst.com



Glossary

e.

 

it as 
 to 
d of 
subdiagram Block diagram within the border of a structure.

subVI VI used in the block diagram of another VI; comparable to a subroutin

T

terminal Object or region on a node through which data passes.

tool Special LabVIEW cursor you can use to perform specific operations.

top-level VI VI at the top of the VI hierarchy. This term distinguishes the VI from its
subVIs.

Type definition
(typedef)

A master copy of a control. If you use a custom control, you can save 
a type definition and use that type definition in all your VIs. If you need
change that control, you can update the single type definition file instea
updating the control in every VI that uses it. A strict type definition can 
force everything about the control to be identical everywhere it is used, not 
just its data type.

U

UUT unit under test

V

VI Virtual instrument.

VI library Special file that contains a collection of related VIs for a specific use. 

W

While Loop Post-iterative test loop structure that repeats a section of code until a 
condition is met. Comparable to a Do loop or a Repeat-Until loop in 
conventional programming languages.

wire Data path between nodes.
© National Instruments Corporation G-5 LabVIEW Test Executive Reference Manual



Index
A
Abort banner. See PASS/FAIL/ABORT banners.
Abort button

default key assignment (table), 3-6
description, 3-3

Abort Loop button
default key assignment (table), 3-6
description, 3-3

adding steps, 2-6 to 2-7, 4-10. See also New Step 
button.

AND expressions, in dependencies, 4-23
architecture of Test Executive, 1-2 to 1-4

sequence callback VIs, 1-4
system callback VIs, 1-3 to 1-4

B
Bad Steps list box, 4-18
block diagram, operator interface VI, 5-4 to 5-5

C
C tests (Windows NT/98/95 and UNIX), 

writing, 4-4 to 4-7
compiling test functions, 4-7
resizing text on user interface panel under 

UNIX, A-3
test data structure, 4-5 to 4-6
test error structure, 4-6 to 4-7

[Callback Paths] section of system configuration 
file

modifying, 5-1 to 5-3
patching, 5-2 to 5-3

callback VIs, 5-6 to 5-23. See also sequence 
callback VIs; system callback VIs.

modifying, 5-6

Post-Step and Pre-Step callback VIs, 
5-17 to 5-19

requirements for Run-Time Systems, 
6-2 to 6-3

Test Executive callback VI interface, 5-6
typedef controls, 5-23 to 5-29

Change Report File button, 4-18
Clear Step Status button

default key assignment (table), 3-6
description, 3-5

Clear Test Display button
default key assignment (table), 3-6
description, 3-5

Clear VI button, 4-18
Close button

default key assignment (table), 3-6
description, 3-1

Close Sequence callback VI, 5-10
command loop, operator interface VI, 5-5
comment field, editing, 4-16
COMMENT.SEQ example, 2-9
common questions about Test Executive, 

A-1 to A-3
Comparison Type ring control, 2-6
comparison type values

Limit Specification indicator (table), 
4-12 to 4-13

Test Display (table), 3-9 to 3-10
compiling

recompiling Test Executive for new 
versions of LabVIEW, A-3

test functions, 4-7
test VIs, after converting from 

Version 4.0, B-2
comp_new.seq example, 2-9
computer_cvi.seq example, 2-9
COMPUTER.SEQ example, 2-9
© National Instruments Corporation I-1 LabVIEW Test Executive Reference Manual



Index
controls. See also indicators.
Abort button, 3-3
Abort Loop button, 3-3
Clear Step Status button, 3-5
Clear Test Display button, 3-5
Close button, 3-1
converting from Version 4.0 to 

Version 5.0, B-1 to B-2
Edit button, 3-2
Function, 4-12
Input Buffer?, 4-14 to 4-15
Invocation Info?, 4-15
key assignments

operator interface (table), 3-6 to 3-7
Sequence Editor controls 

(table), 4-21
Login button, 3-2
Loop Step(s) button, 1-6, 2-3, 3-3 to 3-4
Max Loop Count, 4-14
Name, 4-11
New button, 3-2
Open button, 3-1, B-1 to B-2
Quit button, 2-4, 3-2, B-2
Report File Mode, 4-18
Run Mode, 3-4
Run Step(s) button, 1-6, 2-3, 3-3
Select VI control, 4-18
Sequence Path Specification, 4-17
Sequence Report button, 3-5
Sequence Runtime Updates? 

checkbox, 3-4
Show Test VI Panel at Runtime?, 4-15
Single Pass button, 2-4, 3-2
Stop On Any Failure checkbox, 3-4
Test Runtime Updates? checkbox, 3-5
Test UUT button, 1-4, 2-2, 3-2
Type ring, 4-11
View Test Report button, 2-3, 3-5

conventions used in manual, xiii

converting test sequences, B-1 to B-2
compiling test VIs, B-2
Version 4.0 and 5.0 conversion, 

B-1 to B-2
Copy button, Dependency Editor, 4-25
Copy Steps button

description, 4-9
key assignment (table), 4-20
procedure for copying steps, 4-10

cpu_cvi.seq example, 2-9
cpu_diag.seq example, 2-9
cpu_lv.seq example, 2-9
Create DB Tables Callback.vi, 5-36 to 5-37
creating test sequences. See test sequences.
Cut button, Dependency Editor, 4-25
Cut Steps button

description, 4-9
key assignment (table), 4-20

D
decimal points, localized, A-2
Delete button, Dependency Editor, 4-23
Delete Steps button

description, 4-9
key assignment (table), 4-20
procedure for deleting steps, 4-10

Dependency Editor dialog box, 4-22 to 4-27
Cancel button, 4-25
complex dependencies, 4-24
copying, cutting, pasting, and 

undoing, 4-25
Dependency Editor key assignments 

(table), 4-26
example of setting dependencies, 

2-7 to 2-8
OK button, 4-25
AND and OR expressions, 4-23 to 4-24
relationship among dependencies, run 

mode, and test flow, 4-26 to 4-27
rules for editing, 4-25
LabVIEW Test Executive Reference Manual I-2 www.natinst.com



Index

 

deploying Test Executive. See Run-Time 
System for Test Executive.

Description button, 4-17
Developer operating level, 1-7
Development System for Test Executive, 2-2
diagnostic resources, online, C-1
documentation

conventions used in manual, xiii
related documentation, xiv

E
Edit button

default key assignment (table), 3-6
description, 3-2

Edit Dependencies button. See also 
Dependency Editor dialog box.

description, 4-15
key assignment (table), 4-21
setting dependencies, 2-7

Edit menu, Sequence Editor, 4-20
Edit Step Comment button

description, 4-16
key assignment (table), 4-21

Edit Test VI button
description, 4-15
key assignment (table), 4-21

editing test sequences. See Sequence Editor; 
test sequences.

Enable Test Report Logging option, 4-17
Error cluster, 4-3
error codes reserved by Test Executive, A-3
error messages, Test Display, 3-10
error structure (test error structure), 4-6 to 4-7
examining sample test program, 2-4 to 2-5
execution model, 1-4 to 1-7

modes, 1-4
use of sequence callback VIs, 1-5 to 1-6

Exit callback VI, 5-11
exiting Test Executive. See Quit button.

F
FAIL Action

description, 4-14
key assignment (table), 4-21

Fail banner. See PASS/FAIL/ABORT 
banners.

File menu, Sequence Editor, 4-20
front panel, operator interface VI, 5-4
Function control

description, 4-12
key assignment (table), 4-21

G
GOTO Conditions button

description, 4-16
key assignment (table), 4-21

GOTO Target control
description, 4-16
key assignment (table), 4-21

I
indicators. See also controls.

converting from Version 4.0 to 
Version 5.0, B-2

Limit Specification, 4-12 to 4-13
Load Specification, 4-13
required

Error cluster, 4-3
Test Data cluster, 4-2

Resource, 4-11 to 4-12
Sequence Display, 3-7 to 3-8
Sequence Information, 3-12
Sequence Name, 3-12
Status, 3-12
Test Display, 3-8 to 3-11

comparison values and relative limits
(table), 3-9 to 3-10

error messages, 3-10
© National Instruments Corporation I-3 LabVIEW Test Executive Reference Manual



Index
results of each step, 3-9 to 3-10
Test Report, 3-10 to 3-11

input buffer, for LabVIEW tests, 4-3 to 4-4
Input Buffer? control

description, 4-14 to 4-15
key assignment (table), 4-21

Insert control
above and below radio buttons, 4-9
adding new step, 2-6
key assignment (table), 4-20

Invocation Info? control
description, 4-15
key assignment (table), 4-21

Invocation Information cluster, 4-4

K
key assignment

Dependency Editor (table), 4-23
operator interface (table), 3-6 to 3-7
Sequence Editor control keys (table), 

4-20 to 4-21
Sequence Editor menu shortcuts 

(table), 4-22

L
LabVIEW SQL Tools for result logging, 

5-35 to 5-38
alternate callback VIs, 5-36 to 5-38

Create DB Tables Callback.vi, 
5-36 to 5-37

Operator Interface VI, 5-38
Per-UUT DB Logger Callback.vi, 

5-37 to 5-38
modifications to system configuration 

file, 5-36
LabVIEW Test Executive. See Test Executive.
LabVIEW Test Executive Run-Time System. 

See Run-Time System for Test Executive.

LabVIEW test shells, 5-38 to 5-41
calling interface, 5-38
config mode, 5-39
configuration and execution (figure), 5-41
example sequences, 5-39 to 5-41
run mode, 5-39

LabVIEW tests
incorporating existing tests into Test 

Executive, A-1
optional inputs, 4-3 to 4-4

input buffer, 4-3 to 4-4
Invocation Information cluster, 4-4

required indicators, 4-2 to 4-3
Error cluster, 4-3
Test Data cluster, 4-2

typedef controls, 5-29 to 5-31
writing, 4-1 to 4-4

limit specification, configuring, 2-6. See also 
Set Limit Specification button.

Limit Specification indicator, 4-12 to 4-13
Load Specification indicator

description, 4-13
key assignment (table), 4-21

localized decimal points, A-2
logging. See result logging alternatives.
Login button

default key assignment (table), 3-6
description, 3-2

Login callback VI
calling interface, 5-7
customizing, 5-7
determining operating level, 2-2
overview, 1-3 to 1-4

Login dialog box
default, 3-13
entering password, 2-1 to 2-2

Loop Step(s) button, 2-3
default key assignment (table), 3-6
description, 3-3 to 3-4
typical use, 1-6

Loop Step(s) mode, 1-4
LabVIEW Test Executive Reference Manual I-4 www.natinst.com



Index

n 
M
manual. See documentation.
mass editing of steps, 4-11
Max Loop Count

description, 4-14
key assignment (table), 4-21

modifying Test Executive. See Test Executive.
multiple steps, running, 2-3

N
Name control

description, 4-11
key assignment (table), 4-21

National Instruments Web support, C-1 to C-2
New button

default key assignment (table), 3-6
description, 3-2

New Step button
description, 4-9
editing test sequence, 2-5, 2-6
key assignment (table), 4-20

O
online problem-solving and diagnostic 

resources, C-1
Open button

converting from Version 4.0 to Version 
5.0, B-1 to B-2

default key assignment (table), 3-6
description, 3-1

Open Sequence callback VI
calling interface, 5-9
customizing, 5-9 to 5-10

Open Test callback VI
calling interface, 5-22
customizing, 5-22 to 5-23
typical test sequence, 1-6

Open VI button, 4-18

operating levels
changing to Technician level, 2-3
determined by password entered in Logi

dialog box, 2-2
Developer, 1-7
Operator, 1-7
Technician, 1-7

operator dialog boxes, 3-13 to 3-15
Login dialog box, 3-13
Parsing Error Warning dialog box, 3-15
PASS/FAIL/ABORT banners, 3-14
Run-Time Error Warning dialog 

box, 3-15
Select Sequence dialog box, 3-13
Test Failed dialog box, 3-14
UUT Information dialog box, 3-14

[Operator Interface Path] section, system 
configuration file, 5-3

operator interface VI
block diagram, 5-4 to 5-5
calling as subVI, A-3
command loop, 5-5
front panel, 5-4
logging results with LabVIEW SQL 

Tools, 5-38
modifying default VI, 5-4 to 5-5

Operator level
capabilities, 1-7
changing to Technician level, 2-3

OR expressions, in dependencies, 4-23

P
Parsing Error Warning dialog box, default, 

3-15
PASS/FAIL/ABORT banners

changing, 5-32
default, 3-14

passwords
changing, 5-31 to 5-32
determining operating level, 2-2
© National Instruments Corporation I-5 LabVIEW Test Executive Reference Manual



Index

4

Paste button, Dependency Editor, 4-23
Paste Steps button

description, 4-9
key assignment (table), 4-20

Per-UUT DB Logger Callback.vi, 
5-37 to 5-38

Per-UUT Logger Callback.vi, 5-34 to 5-35
Post-Run-Loop Test callback VI

calling interface, 5-20 to 5-21
customizing, 5-20 to 5-21

Post-run VIs
creating, 4-7
typical test sequence, 1-6

Post-Step callback VI
calling interface, 5-18 to 5-19
overview, 5-17

Post-UUT callback VI
calling interface, 5-16
customizing, 5-16 to 5-17
replacing with Per-UUT Logger 

Callback.vi, 5-34 to 5-35
typical test sequence, 1-5

Post-UUT Loop callback VI
calling interface, 5-17
customizing, 5-17

Pre-run VIs
creating, 4-7
typical test sequence, 1-6

Pre-Step callback VI
calling interface, 5-17 to 5-18
overview, 5-17

Pre-UUT callback VI
calling interface, 5-15
customizing, 5-14 to 5-15
typical test sequence, 1-5

Pre-UUT Loop callback VI
calling interface, 5-15
customizing, 5-14 to 5-15

[Preferences] section, system configuration 
file, 5-3

problem-solving and diagnostic resources, 
online, C-1

Q
questions about Test Executive, A-1 to A-3
Quit button

converting from Version 4.0 to 
Version 5.0, B-2

default key assignment (table), 3-6
description, 3-2
stopping execution of Test Executive, 2-

R
repeating steps. See Loop Step(s) button.
Report File Mode control, 4-18
report generation. See Test Report.
Resource indicator

description, 4-11 to 4-12
key assignment (table), 4-21

result logging alternatives, 5-34 to 5-38
LabVIEW SQL Tools for logging to 

database, 5-35 to 5-38
logging on Per-UUT basis, 5-34 to 5-35
specifying filename to log results, A-2

RTERROR.SEQ example, 2-9
Run Mode, Sequence Display, 3-7
Run Mode, Sequence Editor

key assignment (table), 4-21
options (table), 4-14
relationship among dependencies, Run 

Mode, and test flow, 4-26 to 4-27
Run Mode control

default key assignment (table), 3-6
description, 3-4

Run Step(s) button
default key assignment (table), 3-6
description, 3-3
executing individual steps, 2-3
typical use, 1-6
LabVIEW Test Executive Reference Manual I-6 www.natinst.com



Index

Is 

-8

 

 

Run Step(s) mode, 1-4
Run-Time Error Warning dialog box, 

default, 3-15
Run-Time System for Test Executive, 

6-1 to 6-4
building, 6-1 to 6-2
overview, 1-2, 6-1
required components, 6-2 to 6-4

callback and test VIs, 6-2 to 6-3
shared libraries (C test resources), 

6-4
test sequences, 6-4
testexec.ini file, 6-3

running test sequences. See test sequences.

S
Save Sequence callback VI

calling interface, 5-10
customizing, 5-11

saving Test Executive VIs for distribution, 
6-2 to 6-3

Select Resource button, 2-5
Select Sequence callback VI

calling interface, 5-8
customizing, 5-9

Select Sequence dialog box, default, 3-13
Select VI control, 4-18
sequence callback VIs

flow of callback VIs in UUT test loop 
(figure), 5-13

list of VIs, 1-4, 5-12
modifying, 5-12 to 5-13
Open Test

calling interface, 5-22
customizing, 5-22 to 5-23
typical test sequence, 1-6

Post-Run-Loop Test, 5-20 to 5-21
Post-Step, 5-17 to 5-19

Post-UUT
calling interface, 5-16
customizing, 5-16 to 5-17
replacing with Per-UUT Logger 

Callback.vi, 5-34 to 5-35
typical test sequence, 1-5

Post-UUT Loop, 5-17
Pre-Step, 5-17 to 5-18
Pre-UUT

calling interface, 5-15
customizing, 5-14 to 5-15
typical test sequence, 1-5

Pre-UUT Loop, 5-14 to 5-15
Test Failure, 5-21 to 5-22
Test Report

calling interface, 5-19 to 5-20
customizing, 5-19 to 5-20
typical test sequence, 1-5 to 1-6

test sequence and associated callback V
(figure), 1-5

typedefs, 5-23 to 5-29
typical use in execution model, 1-5 to 1-7

Sequence Description indicator, 
converting, B-2

Sequence Display indicator, 3-7 to 3-8
Run Mode field values (table), 3-7
Step Status/Result field values (table), 3

Sequence Editor. See also test sequences.
control key assignments (table), 

4-20 to 4-21
customizing initial values of properties of

new steps, A-3
Edit menu, 4-20
editing dependencies, 4-22 to 4-27

Cancel button, 4-25
complex dependencies, 4-24
copying, cutting, pasting, and 

undoing, 4-25
Dependency Editor key assignments

(table), 4-26
OK button, 4-25
© National Instruments Corporation I-7 LabVIEW Test Executive Reference Manual



Index

2

AND and OR expressions, 
4-23 to 4-24

relationship among dependencies, 
run mode, and test flow, 
4-26 to 4-27

rules for editing, 4-25
File menu, 4-20
invoking, 2-5
mass editing, 4-11
menu shortcuts (table), 4-22
Sequence Errors, 4-18 to 4-20
Sequence Options, 4-16 to 4-18

Change Report File button, 4-18
Description button, 4-17
Enable Test Report Logging, 4-17
Report File Mode control, 4-18
Sequence Load Specification, 4-16
Sequence Path Specification, 4-17
Sequence VIs, 4-18
Stop on any Failure checkbox, 4-17

step editing elements, 4-9 to 4-11
Copy Steps button, 4-9
Cut Steps button, 4-9
Delete Steps button, 4-9
Insert, 4-9
New Step button, 4-9
Undo Step Edits button, 4-9
using editing elements, 4-10

step editor controls, 4-11 to 4-16
Edit Dependencies button, 4-15
Edit Step Comment button, 4-16
Edit Test VI button, 4-15
FAIL Action, 4-14
Function, 4-11 to 4-12
GOTO Conditions button, 4-16
GOTO Target control, 4-16
Input Buffer? control, 4-14 to 4-15
Invocation Info? control, 4-15
Limit Specification indicator, 

4-12 to 4-13
Load Specification indicator, 4-13

Max Loop Count, 4-14
Name control, 4-11
Resource indicator, 4-11 to 4-12
Run Mode, 4-14
Show Test VI Panel at Runtime? 

control, 4-15
Type ring control, 4-11

Sequence Errors dialog box, 4-18 to 4-20
sequence file, opening specific file while 

launching, A-2
Sequence File Path indicator, converting, B-
Sequence Information indicator, 3-12
Sequence Load Specification control, 4-16
Sequence Name indicator

converting from Version 4.0 to 
Version 5.0, B-2

description, 3-12
Sequence Options, 4-16 to 4-18

Change Report File button, 4-18
Description button, 4-17
Enable Test Report Logging, 4-17
Report File Mode control, 4-18
Sequence Load Specification, 4-16
Sequence Path Specification, 4-17
Sequence VIs, 4-18
Stop on any Failure checkbox, 4-17

Sequence Path Specification control, 4-17
Sequence Report button

default key assignment (table), 3-7
description, 3-5

Sequence Report callback VI, 5-11
Sequence Runtime Updates? checkbox

default key assignment (table), 3-6
description, 3-4

Sequence Version indicator, converting, B-2
Sequence VIs option, 4-18
sequences. See test sequences.
Set Limit Specification button

description, 2-6
key assignment (table), 4-21

Set Limit Specification dialog box, 2-6 to 2-7
LabVIEW Test Executive Reference Manual I-8 www.natinst.com



Index
shared libraries, for Run-Time Systems, 6-4
Show Test VI Panel at Runtime? control

description, 4-15
key assignment (table), 4-21

Single Pass button
default key assignment (table), 3-6
description, 3-2
executing test sequence, 2-4

Single Pass mode
executing individual steps, 2-3 to 2-4
flow of execution (figure), 1-4
purpose and use, 1-4
typical test sequence, 1-6

software-related resources, C-2
SQL Tools. See LabVIEW SQL Tools for 

result logging.
starting Test Executive, 2-1 to 2-2
Status indicator, Test Display (table), 3-12
Step Problems list box, 4-19
step resources, loading into memory, A-1
Step Status/Result field values (table), 3-8
steps

definition, 4-8
displaying individual steps, A-1
executing individual steps, 2-3 to 2-4
mass editing, 4-11
specifications, 4-8

Stop On Any Failure checkbox
default key assignment (table), 3-6
description, 3-4
setting, 4-17

structures
test data structure, 4-5 to 4-6
test error structure, 4-6 to 4-7

system callback VIs
Close Sequence, 5-10
Exit, 5-11
Login

calling interface, 5-7
customizing, 5-7

determining operating level, 2-2
purpose and use, 1-3 to 1-4

Open Sequence, 5-9 to 5-10
overview, 1-3 to 1-4, 5-6 to 5-7
Save Sequence, 5-10 to 5-11
Select Sequence, 5-8 to 5-9
Sequence Report, 5-11
typedefs, 5-23 to 5-29

system configuration file (testexec.ini), 
5-1 to 5-3

[Callback Paths] section, 5-1 to 5-3
modifying for result logging, 5-36
[Operator Interface Path] section, 5-3
[Preferences] section, 5-3
requirements for Run-Time Systems, 6-3

T
technical support resources, C-1 to C-2
Technician operating level

capabilities, 1-7
changing to, 2-3

Test Data cluster, 4-2
test data structure, 4-5 to 4-6

parameters (table), 4-5 to 4-6
structure definition, 4-5

Test Display, 3-8 to 3-11
comparison type values (table), 

3-9 to 3-10
error messages, 3-10
result of each test, 3-9 to 3-10
Test Report, 3-10 to 3-11

test error structure, 4-6 to 4-7
Test Executive. See also Run-Time System for 

Test Executive.
architecture, 1-2 to 1-4

sequence callback VIs, 1-4
system callback VIs, 1-3 to 1-4

calling as subVI, A-3
common questions, A-1 to A-3
Development System, 1-2
© National Instruments Corporation I-9 LabVIEW Test Executive Reference Manual



Index
execution model, 1-4 to 1-7
features, 1-1
modifying

callback VIs, 5-6 to 5-23
operator interface VI, 5-4 to 5-5
PASS/FAIL/ABORT banners, 5-32
passwords, 5-31 to 5-32
result logging alternatives, 

5-34 to 5-38
system configuration file 

(testexec.ini), 5-1 to 5-3
Test Report, 5-33 to 5-34
typedef controls, 5-23 to 5-31
using another application for report 

generation, 5-34
using LabVIEW Test shells, 

5-38 to 5-41
UUT serial number prompt, 5-33

operating levels, 1-7
overview, 1-1 to 1-2
quitting, 2-4
recompiling for new versions of 

LabVIEW, A-3
Run-Time System, 1-2
starting, 2-1 to 2-2
versions, 1-2

Test Executive VIs, saving for distribution, 
6-2 to 6-3

Test Failed dialog box, default, 3-13
Test Failure callback VI

calling interface, 5-21
customizing, 5-21 to 5-22

test program, examining, 2-4 to 2-5
Test Report

changing, 5-33 to 5-34
enabling logging, 4-17
example (figure), 3-11
generating with other applications, 5-34

Test Report callback VI
calling interface, 5-19 to 5-20
customizing, 5-19 to 5-20
typical test sequence, 1-5 to 1-6

Test Runtime Updates? checkbox
default key assignment (table), 3-7
description, 3-5

test sequences. See also Sequence Editor.
components, 4-7
conversion notes, B-1 to B-2

compiling test VIs, B-2
Version 4.0 and 5.0 conversion, 

B-1 to B-2
creating and editing, 2-5 to 2-8, 

4-8 to 4-27
adding steps, 2-6 to 2-7, 4-10
configuring limit specification, 2-6
copying steps, 4-10
creating steps, 2-5 to 2-6
deleting steps, 4-10
inserting steps, 4-9
mass editing, 4-11
modifying steps, 4-10
running the sequence, 2-8
setting dependencies, 2-7 to 2-8

definition, 4-7
examining test program, 2-4 to 2-5
example sequences, 2-9
opening and running, 2-1 to 2-4

changing to Technician level, 2-3
exiting Test Executive, 2-4
individual steps, 2-3 to 2-4
multiple steps, 2-3
Single Pass mode, 2-3 to 2-4
starting Test Executive, 2-1 to 2-2
steps for running, 2-2 to 2-4

opening specific sequence file while 
launching, A-2

requirements for Run-Time Systems, 6-4
LabVIEW Test Executive Reference Manual I-10 www.natinst.com



Index

.

test shells. See LabVIEW test shells.
Test String Callback.vi, 5-35
Test UUT button

default key assignment (table), 3-6
description, 3-2
executing test sequence, 1-4, 2-2

Test UUT mode
purpose and use, 1-4
typical test sequence, 1-5 to 1-6

testexec.ini. See system configuration file 
(testexec.ini).

tests, writing
C tests (Windows NT/98/95 and 

UNIX), 4-4 to 4-7
compiling test functions, 4-7
test data structure, 4-5 to 4-6
test error structure, 4-6 to 4-7

LabVIEW tests, 4-1 to 4-4
optional inputs, 4-3 to 4-4
required indicators, 4-2 to 4-3

VI Wizard, 4-1
tTestData structure

definition, 4-5
parameters (table), 4-5 to 4-6

Type ring control
description, 4-11
key assignment (table), 4-20

typedef controls, 5-23 to 5-31
callback VIs, 5-23 to 5-29
LabVIEW tests, 5-29 to 5-31
overview, 5-23

TYPEDEF-Input buffer.ctl, 5-30
TYPEDEF-Invocation Info.ctl, 5-30
TYPEDEF-Login Info.ctl., 5-23 to 5-24
TYPEDEF-Mode.ctl, 5-30
TYPEDEF-Sequence Element.ctl, 

5-25 to 5-26
TYPEDEF-Sequence Results.ctl, 5-27 to 5-28
TYPEDEF-Sequence.ctl, 5-24 to 5-25

TYPEDEF-Test Data.ctl, 5-30 to 5-31
TYPEDEF-Test Results.ctl, 5-28 to 5-29
TYPEDEF-UUT Results.ctl, 5-27

U
UNDEFINE.SEQ example, 2-9
Undo button, Dependency Editor, 4-23
Undo Step Edits button

description, 4-9
key assignment (table), 4-20

UNIX tests. See C tests (Windows NT/98/95 
and UNIX).

UUT Information dialog box, default, 3-14
UUT serial number

building filename from serial 
number, A-2

changing prompt, 5-33
UUT Test mode. See Test UUT mode.

V
VI Wizard, 4-1
View Test Report button

default key assignment (table), 3-6
description, 3-5

W
Web support from National Instruments, 

C-1 to C-2
online problem-solving and diagnostic 

resources, C-1
software-related resources, C-2

Windows NT/98/95 and UNIX tests. See C 
tests (Windows NT/98/95 and UNIX).

wizard, for writing tests, 4-1
Worldwide technical support, C-2
writing tests. See test sequences; tests, writing
© National Instruments Corporation I-11 LabVIEW Test Executive Reference Manual


	Test Executive Reference Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	Overview
	Features
	Available Packages
	Development System
	Run-Time System


	Test Executive Architecture
	System Callback VIs
	Sequence Callback VIs

	Execution Model
	Operating Levels


	Chapter 2 Getting Started
	Running a Test Sequence
	Starting the Test Executive
	Opening and Running a Test Sequence
	Changing to Technician Level
	Executing Individual Steps and Using�Single�Pass�Mode
	Quitting the Test Executive


	Examining a Test Program
	Editing a Test Sequence
	Example Sequences

	Chapter 3 Operating the Test Executive
	Controls
	Open
	Close
	Quit
	Login
	Edit
	New
	Test UUT
	Single Pass
	Abort
	Abort Loop
	Run Step(s)
	Loop Step(s)
	Stop On Any Failure
	Sequence Runtime Updates?
	Run Mode
	Clear Step Status
	Clear Test Display
	View Test Report
	Sequence Report
	Test Runtime Updates?
	Operator Interface Key Assignments

	Indicators
	Sequence Display
	Test Display
	Result of Each Step
	Error Messages
	The Test Report

	Status
	Sequence Name
	Sequence Information

	Operator Dialog Boxes
	Default Login Dialog Box
	Default Select Sequence Dialog Box
	Default UUT Information Dialog Box
	Default Test Failed Dialog Box
	Default PASS/FAIL/ABORT Banners
	Run-Time Error Warning Dialog Box
	Parsing Error Dialog Box


	Chapter 4 Creating Tests and Test Sequences
	Writing LabVIEW Tests
	Required Indicators
	Test Data Cluster
	Error Cluster

	Optional Inputs
	Input Buffer
	Invocation Information


	Writing C Tests (Windows NT/98/95 and UNIX)
	Test Data Structure
	Test Error Structure
	Compiling Test Functions

	Creating Pre-Run and Post-Run VIs
	What is a Test Sequence?
	What is a Step?
	Creating or Editing a Test Sequence
	Step Editing Elements
	Insert
	New Step
	Copy Steps, Cut Steps, Delete Steps, Paste Steps, and Undo Step Edits
	Using the Editing Elements
	Mass Editing

	Step Editor Controls
	Type
	Name (LabVIEW Test, C Test, Sequence)
	Resource (LabVIEW Test, C Test, Sequence)
	Function (C Test)
	Limit Specification (LabVIEW Test, C Test)
	Load Specification (LabVIEW Test, C Test, Sequence)
	Run Mode (LabVIEW Test, C Test, Sequence)
	FAIL Action (LabVIEW Test, C Test, Sequence)
	Input Buffer? (LabVIEW Test, C Test)
	Invocation Info? (LabVIEW Test)
	Show Test VI Panel at Runtime? (LabVIEW Test)
	Edit Test VI (LabVIEW Test)
	Edit Dependencies
	Edit Step Comment (LabVIEW Test, C Test, GOTO, Sequence)
	GOTO Target (GOTO)
	GOTO Conditions (GOTO)

	Sequence Options
	Sequence Load Specification
	Sequence Path Specification
	Stop on Any Failure
	Description
	Enable Test Report Logging
	Report File Mode
	Change Report File
	Sequence VIs

	Sequence Errors
	File Menu
	Edit Menu
	Sequence Editor Control Key Assignments
	Sequence Editor Menu Shortcuts
	Editing Dependencies
	AND and OR Expressions
	Complex Dependencies
	Copy, Cut, Delete, Paste, and Undo
	OK
	Cancel
	Dependency Editor Key Assignments
	Relationship among Dependencies, Run Mode, and�Test Flow



	Chapter 5 Modifying the Test Executive
	System Configuration File, testexec.ini
	[Callback Paths] Section
	Patching Callback Paths

	[Operator Interface Path] Section
	[Preferences] Section

	Operator Interface VI
	Modifying the Default VI
	Front Panel
	Block Diagram
	Command Loop


	Callback VIs
	Test Executive Callback VI Calling Interface
	System Callbacks
	Login
	Select Sequence
	Open Sequence
	Close Sequence
	Save Sequence
	Sequence Report
	Exit

	Sequence Callbacks
	Pre-UUT Loop
	Pre-UUT
	Post-UUT
	Post-UUT Loop

	Pre-Step and Post-Step Callbacks
	Test Report
	Post Run-Loop Test
	Test Failure
	Open Test VI


	Test Executive Typedef Controls
	Typedefs for Callback VIs
	TYPEDEF - Login Info.ctl
	TYPEDEF - Sequence.ctl
	TYPEDEF - Sequence Element.ctl
	TYPEDEF - UUT Results.ctl
	TYPEDEF - Sequence Result.ctl
	TYPEDEF - Test Result.ctl

	Typedefs for LabVIEW Tests
	TYPEDEF - Invocation Info.ctl
	TYPEDEF - Input buffer.ctl
	TYPEDEF - Mode.ctl
	TYPEDEF - Test Data.ctl


	Common Modifications
	Changing Passwords
	Changing PASS/FAIL/ABORT Banners
	Changing the UUT Serial Number Prompt
	Changing the Test Report
	Using Another Application for Report Generation

	Advanced Modifications
	Result Logging Alternatives
	Logging Test Results on a Per-UUT Basis
	Logging Results to a Database Using the LabVIEW SQL Tools (Windows only)

	Using LabVIEW Test Shells
	Example Sequence Using LabVIEW Test Shells


	Chapter 6 Deploying the Test Executive
	LabVIEW Test Executive Run-Time System
	Building a Run-Time System
	Other Required Components for a Complete�Run-Time�System
	Callback and Test VIs
	The testexec.ini File
	Test Sequences
	Shared Libraries (C Test Resources)


	Appendix A Common Questions
	Appendix B Sequence Conversion Notes
	Version 4.0 and 5.0 Conversion
	Step 1—Use the 5.0 Sequence File Converter
	Step 2—Compile Your Test VIs


	Appendix C Technical Support Resources
	NI Web Support
	Online Problem-Solving and Diagnostic Resources
	Software-Related Resources

	Worldwide Support

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Figures
	Figure 1-1. Architecture of the Test Executive
	Figure 1-2. Test Sequence Callback VIs
	Figure 1-3. Flow of Execution in Test UUT Mode
	Figure 1-4. Flow of Execution in Single Pass Mode
	Figure 3-1. Sample Test Report
	Figure 5-1. Flow of Sequence Callback VIs in a UUT Test Loop
	Figure 5-2. Test VI Shell Configuration and Execution

	Tables
	Table 1-1. Operating Level Capabilities
	Table 3-1. Default Operator Interface Key Assignments 
	Table 3-2. Run Mode Field Values 
	Table 3-3. Step Status/Result Field Values 
	Table 3-4. Comparison Values and Relative Limits 
	Table 3-5. Status Indicator Values 
	Table 4-1. Test Data Cluster Elements 
	Table 4-2. Error Cluster Elements 
	Table 4-3. tTestData Structure Parameters 
	Table 4-4. tTestError Structure Parameters
	Table 4-5. Comparison Type Values 
	Table 4-6. Run Mode Options 
	Table 4-7. FAIL Action Options 
	Table 4-8. Possible Errors and Corrective Actions in the Sequence Errors Dialog Box
	Table 4-9. Key Assignments for Sequence Editor Controls 
	Table 4-10. Sequence Editor Menu Commands 
	Table 4-11. Dependency Editor Key Assignments  
	Table 4-12. Run Mode Step Result Values


